Future projections of evapotranspiration (ET) are of critical importance for agricultural and freshwater management and for predicting land–atmosphere feedbacks on the climate system. However, ET from phase 5 of the Coupled Model Intercomparison Project (CMIP5) simulations exhibits substantial biases, bolstering little confidence in future ET projections. Despite poor predictive skill and large bias of ET… More

in    0

Evapotranspiration (ET) is a key component of the atmospheric and terrestrial water and energy budgets. Satellite‐based vegetation index approaches have used remotely sensed vegetation and reanalysis meteorological properties with surface energy balance models to estimate global ET (MOD16 ET). We reconstructed satellite retrievals using in situ meteorology (Argonne‐ET) and evaluated them using a dense network… More

in    0

Canopy height is an important and dynamic site variable that affects the mass and energy exchanges between vegetation and the atmosphere. We develop a method to estimate canopy height routinely, using surface-layer theory and turbulence measurements made from a collection of flux towers. This tool is based on connecting the logarithmic wind profile generally expected… More

in    0