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What is remote sensing?

- Remote sensing: the acquisition of information about an
object without making physical contact with the objects.




Remote sensing measures radiation
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Remote sensing products of fluxes (e.g., GPP and ET) are not measurements, but
rather modeling results using remote sensing measurements of radiation based on
certain assumptions.



RS and Flux Tower complement each other

Optical tower-based
nstruments vs. Flux Tower

Satellite vs. Flux Tower

responses; meteorological drivers,
e.g. temperature, humidity

Remote sensing grids: land
surface drivers, e.g. temperature
vegetation indices
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An exciting era for remote sensing

Novel technology and , Global networks
, The next generation
algorithms open new , Drones! of tower-based
, satellite sensors ,
windows remote sensing

What can we learn about fluxes with remote sensing?



Remote sensing of global photosynthesis

GPP
Total carbon storage
s FLUXNET sites

Total carbon storage ( PgC)
Number of FLUXNET sites

—~—
o
P
x
L
>
&)
(o))
Q.
S
>
-
>
-
O
=
o
@)
—
Q
>
L
©
£
™
Q
n
2
O
i
O

Al
1] | AL 1O 1 | B R

e I | 1 ‘ ] ] | [ | | ] | l

-60 -50 -40 -30 -20 -10 O 10 20 30 40 50 60 70 80
Latitude

Schimel et al., 2015




How is photosynthesis estimated? — leaf scale

Portable Not-so-portable
Photosynthesis System Photosynthesis System

Source: Li-Cor; Joe Berry



Remote sensing of global photosynthesis
NDVI developed in the 1970s

Visible Near infrared Shortwave infrared

Normalized Difference Vegetation Index
= (NIR-R)/(NIR+R)
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Remote sensing of global photosynthesis
Global mapping of vegetation in the 1980s



emote sensing of global photosynthesis
Global mapping of vegetation in the 1980s
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Relationship between atmospheric
CO, variations and a
satellite-derived vegetation index
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Fig. 1 Variation of global atmospheric CO, concentrations with Weighted average global NOVI

latitude and time based on the NOAA/GMCC flask measurements
for 1982-84.

CO2 concentration NDVI

Fig. 4 The globally averaged atmospheric CO, concentration

plotted against the globally averaged NDVI with a time lag of 1

month. The CO, data are from the global network of 20
NOAA/GMCC stations.

A negative relationship
between CO?2
concentration and NDVI



Remote sensing of global photosynthesis
MODIS in the 2000s
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GPP = PAR X fAPAR X &;

)

Absorbed PAR

f(plant functional type,

temperature, water

PAR: Photosynthetically Active Radiation availability)
fAPAR: Fraction of PAR absorbed by leaves



The vegetation index is a measure of
the “greenness” of tree canopy

Visible Near infrared Shortwave infrared

Normalized Difference Vegetation Index
= (NIR-R)/(NIR+R)
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GPP = PAR X fAPAR X ¢,

Estimated in a
similar way as

f(plant functional type,

Vegetation Index temperature, water)
PAR: Photosynthetically Active Radiation Myneni et al. 2002

fAPAR: Fraction of PAR absorbed by leaves



Vegetation index is about potential
photosynthesis

Is there a tool that can help us to tell the real-time photosynthesis of plants globally?



Fluorescence in nature

Source:Matt Reinbold; Wikipedia; NASA



Chlorophyll absorb mainly blue and red photons

Absorption by
chlorophyll a
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SIF is emitted in a longer wavelength
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Satellite measurements of SIF
SIF from OCQO-2

OCO—-2 Solar—Induced Fluorescence Aug—0Oct 2014

SIF from GOSAT

A Chlorophyll a fluorescence at 755 nm, June 2009 through May 2010 average
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SIF from GOME-2

Joiner et al., 201 |
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Guanter et al.,, 2020



Solar-induced chlorophyll fluorescence (SIF)

Reflectance

- Solar induced fluorescence
O5 absorptions

—— H5O absorptions
Fraunhofer lines

retlectance

N

Credit: NASA
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Glowing plants

Other available SIF products:

(Joiner et al.,, 2016)
(Sun et al,, 2020)
(Kohler et al., 2020)
(Frankenberg et al., 2012)

(Liu et al,, 2020)

(First product available)
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Linking SIF to GPP

GPP = PAR X fAPAR X @, X |/k

SIF = PAR X fAPAR X @®F X fesc

PAR: Photosynthetically Active Radiation
fAPAR: Fraction of PAR absorbed by leaves

®p: Photochemical yield

k: assuming the fraction of light used by PSll is 0.5, k is k is the number of electron
equivalents produced by LEF required to reduce one molecule of CO2.

®r: Fluorescence yield

fesc: escape probability (structure)



Fluorescence provides an optical probe into the
photosynthetic machinery

| Chloroplast
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What does a change in SIF tell you!?

Step 1: Photon Fate

Step 2: Carbon Assimilation

Step 3: Scaling
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Leaf-level physiology: changes in PQ or chlorophyll content

Canopy structure: changes in leaf area and/or leaf angle

Viewing angle: how a sensor is angled wrt the object matters a lot

Magney, Barnes, and Yang 2020




Sun-sensor-object geometry is essential in

optical remote sensing

Observation 2

Observation 3 7 (6y2; Ov2) Y
(le; q)vl) (9\,3; q)v3)

Observation 1

i EObservation 3" NESEE




Bidirectional Reflectance Distribution Function
(BRDF)
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Light Rain in Early Spring

CIEINSS)
by Han Yu

EEFITAT

though one sees the
color of grass from
afar, if one gets

closer it is not really

there.
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Sun-sensor-object geometry is essential in
optical remote sensing
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What does a change in SIF tell you!?

GPP?

Drought!?

Transpiration!?

Impacts of diffuse radiation!?
CO2 fertilization?
Heat stress!?

Flooding!?

Beetle attack!?

Changes in forest composition!?



A few considerations when linking RS with Flux tower
measurements

Optical tower-based
instruments vs. Flux Tower

Satellite vs. Flux Tower

responses; meteorological drivers,
e.g. temperature, humidity

Remote sensing grids: land
surface drivers, e.g. temperature

vegetation indices
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Metzger 2018

* RS data should match the footprint of the EC
tower measurements

Source: Wayne Dawson

* Tower-based optical sensors usually have smaller
footprints compared with EC towers, but they also
can provide measurements of individuals

* With careful consideration, tower-based optical

* Optical & thermal satellite measurements are only
good on sunny days

* For ecosystems with complicated canopy data are good for cloudy days too

structures, note that *some™* RS measurements are L ,
* RS data can provide information beyond GPP!

most sensitive to the top of the canopy

* Remember that GPP from EC tower measurements
is also “modeled” with assumptions

* SIF and vegetation indices, to the best, tell us about
the electron transport part of photosynthesis



Synergy of RS methods

ECOSTRESS
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Figure 1| Spatial and temporal synergy of observations and their applications. A pretzel diagram of
observations (red text) from each instrument (coloured shapes) and the synergistic physical parameters
that can be derived (black text) when observations are taken at synchronous and complementary spatial

and temporal resolutions.

Stavros et al., 2017



RS sensors at a glance

UV Visible NIR  SWIR TIR FIR Microwave >
Nl BQ N BB Landsat-8
N Il X N N Sentinel-2
B PlanetScope (4 bands) 1 GPM (Ku/Ka-band)

e B Terra/Aqua MODIS (multi-spectral)

H B Bl OCO-2 (hyperspectral)
NICESat-2; GEDI (LIDAR) IBiomass (L-band)
B AVIRIS-NG; SBG Mission; HISUI (hyperspectral) § SMAP (L-band)
B ECOSTRESS (6 bands)
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Trade-off between the spatial &

I
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