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Summary 

It has been argued from thermodynamic principles that a more ‘developed’ ecosystem 

should have relatively lower surface temperature (Ts) than a less developed counterpart, all 

else being equal, if entropy production is maximized as ecosystems develop (Schneider and 

Kay, 1994). The logic behind this argument follows from the maximum entropy production 

(MEP) principle (Dewar, 2003). For open, non-equilibrium systems subject to external 

constraints (e.g. conservation laws and external forcing), such as ecosystems, the most 

probable macroscopic state, namely the state that follows from more microscopic pathways 

than any other (Jaynes, 1957), has a higher probability of being selected. In other words, the 

realization of ecosystem structures that dissipate energy for the production of entropy is a 

highly probable ecosystem state (Dewar, 2005). This ecosystem state is one that degrades 

energy (i.e. produces entropy) most efficiently, with a macroscopic characteristic being cooler 

Ts. It stands to reason that a highly dissipative state is not realized immediately by 

ecosystems; rather the chance of this structure occurring increases over time (Kay et al., 2001; 

Schneider and Kay, 1994).  

The MEP outcome that more complex ecosystems have lower Ts has been found in 

isolated examples using thermal remote sensing (Allen et al., 2001; Kay et al., 2001; Luvall 

and Holbo, 1991), and thermal characteristics have been used to quantify ecosystem 



restoration success (Aerts et al., 2004). It is difficult to quantify what “ecosystem dissipative 

structures” mean in practice (Ulanowicz, 1986), but divergence of surface temperature has 

been observed in ecosystem complexity gradients under conditions of environmental stress 

(Lin et al., 2009), with the more developed intact tropical forest exhibiting thermal 

characteristics indicative of self-organization with respect to artificial rainforest and degraded 

ecosystems. The implications of MEP have not been explored across global ecosystems to 

date (Stoy, in press) despite the logical consequences for ecosystem and energy management 

in an era of global change (Chaisson, 2008; IPCC, 2007).  

We propose to investigate the predictions of the MEP hypothesis by comparing Ts 

variability, and its response to environmental stress, across the globe using examples of paired 

ecosystems of varying ecosystem-level complexity from the FLUXNET database. 

Specifically, we seek to address two coupled objectives: (i) quantify the effects of ecosystem 

complexity on surface temperature across global plant functional types (PFTs), and (ii) 

contribute to ecological theory by characterizing what ‘ecosystem functional complexity’ 

means for the purposes of quantifying entropy, noting that species diversity and functional 

diversity (including diversity of water and energy flow paths) may be intertwined. In other 

words, within the context of the second objective we will explore the role of ecosystem 

hydrology and the biosphere-atmosphere flux of water in conferring thermal characteristics to 

ecosystems of varying complexity. 

This FLUXNET data access proposal is intended to contribute to the postdoctoral 

fellowship of the project co-coordinator, whose task it is in part to build upon the successes of 

her Ph.D. research (Lin et al., 2009). 

Example and Proof of Concept 

 In can be shown for the case of the Duke Forest AmeriFlux chronosequence that the 

ecosystem with arguably lowest hydrological complexity, the old field ecosystem [OF, (Lai 

and Katul, 2000)] has higher Ts under conditions of hydrologic stress (quantified here by the 

soil moisture, �) than adjacent forested ecosystems (Juang et al., 2007), resulting in greater 

sensible heat flux (Stoy et al., 2006). This effect is demonstrated in Figure 1, assuming to a 



first order that longwave upwelling radiation (‘outgoing’, LWout) is an effective surrogate for 

cross-site Ts comparison [i.e. that inter-ecosystem differences in emissivity are small (Chen 

and Blong, 2002), but also noting that emissivity is related to albedo following Kirchoff’s 

Law of thermal radiation, and that these albedos differ spatially and temporally in Duke 

Forest (Stoy et al., 2006)]. LWout is greatest at OF, particularly during drought, compared to 

the planted pine (PP) and hardwood forest (HW) ecosystems, indicative of reduced 

evaporative cooling (Juang et al., 2007; Stoy et al., 2006) that is likely due to some combined 

effect of ecosystem water storage capacity, rooting depth and distribution, and inherent 

drought sensitivity (Lai and Katul, 2000), all of which are ecosystem characteristics that may 

be formally related to entropy production. 



 

Figure 1 (top) Longwave outgoing radiation (LWout) for the adjacent Duke Forest old field 

(OF), planted pine (PP) and hardwood forest (HW) ecosystems over a two year period. 

(middle) LWout during the peak summer-time period of a year with normal precipitation 

statistics, and (bottom) LWout during drought conditions during the growing season as 

quantified by the soil moisture (dashed green line, multiplied by 1000 to place on a common 

scale). 
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