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How to end up working on EC even if you do not want...

Did my master in Remote Sensing, never wanted to work
on eddy covariance

In my PhD | started to use EC data (really few sites)

Realized that the data available were too heterogeneous,
so together with Markus Reichstein started to work on
standardization

Created a first standardized collection of EC data (LaThuile
Collection)

Updated with new data and processing for the FLUXNET
2015 Collection

Coordinator of the European ICOS network of EC sites
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EC can be applied over

different surfaces (e.g. urban)
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QA-QC filtering strategy

A good data filtering is critical for the quality of the final product.
Objective QAQC are complex but needed, making maximum use of
metadata, instruments flags, status indicators and statistical tests.

Types of error Test (examples)

Integrity of raw-data
(gaps, diagnostics of the instruments, wind sectors etc.)

% of not available records

Instrumental problems not detected by the diagnostic e.g.
- Signal resolution (limited digits)

- Dropouts (continuous fix value) Statistical tests (e.g. kurtosis)
- Presence of spikes

- Discontinuities (jumps in the

Foken and Wichura (1996), Mahrt

Violation of stationary conditions (1998)

Lack of well-developed turbulence conditions Foken and Wichura (1996)

Spectral correction factor

Suitability of spectral correction procedure )
¥ pecta B procecure magnitude




QA-QC filtering strategy

INPUT DATA REQUIRED
FOR QC TEST

CALCULATE TEST STATISTIC AND
DEFINE THRESHOLD VALUES

............................................

Data quality filtering should be
efficient, reproducible and flexible to
accommodate new tests.

Strategy: two thresholds for each test
combined with an outlier detection.

Note: moderate flags are

not combined. They are
treated individually
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QA-QC filtering strategy
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imeseries

Heterogeneityinat

Real ecosystem variability? Change of sensors or setup? Different processing or QC?
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The eddy covariance fluxes

Evolution in time of the Advection due to turbulent Mean molecular
concentration transport diffusion
’ /
Advection due to not turbulent
Net Flux

=

transport

Molecular diffusion is minor in turbulent transport regime

Horizontal variations of mean concentration can be neglected

Mean vertical velocity is almost zero

Turbulence is homogeneous in the different horizontal directions




Net Ecosystem Exchange calculation

F :FTUR+FgTO‘|‘FADV

C C C
Turbulent fluxes Storage Advection
Measured by the Measured using Difficult to measure
EC system additional Corrections needed

systems (profile)



STORAGE (Sc) example: nighttime, summer.

Turbulent flux
CO2 under the measurement point

| ] \\m

High turbulence Low turbulence High turbulence
(also the period before) NEE

TIME (three half hours)

All the examples from here will be on CO2

CO2




STORAGE (Sc) example: nighttime, summer.

5 g

High turbulence

(also before)
TIME (three half hours)

Fc Sc NEE

Real NEE

L

Low turbulence

Fc Sc NEE

CO2

High turbulence




ADVECTION example: nighttime, summer.

5 g

High turbulence

(also before)
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STORAGE + ADVECTION example: nighttime, summer.

5 g

High turbulence

(also before)
TIME (three half hours)

Fc Sc NEE

Real NEE

L

Low turbulence
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High turbulence




Storage and advection effects on diurnal pattern

\ /\ Expected evolution of the

Time| biotic flux from an ecosystem
with photosintetically active
vegetation

Flux

Only staadgectioh: duri6g?2
reghtrédrbulenog dedgdse,is
tHuxesated bydeestimadéeht
tirach spordge increase.
Respiraithn gueele restirfaaked,
oompeTpateatiofat  daily
timescale!)

Real situation in most of cases: both storage and non turbulent transport are present
(the red and green surfaces don’t compensate).



Storage measurement

We need to measure the CO2 concentration variations inside our reference
box (Sc)

(Finnigan et al. 2003)



Storage measurement

Generally it is calculated using a vertical profile of 5 or more concentration
measurement points on towers (logarithmic distribution, denser close to the
ground).

_ P h dc (2) i
R-T, ) ot

C

(Finnigan et al. 2003)



Storage measurement

Generally it is calculated using a vertical profile of 5 or more concentration
measurement points on towers (logarithmic distribution, denser close to the
ground).

G hde(2) J But is the tower position the

C— - ) most representative point?
R-T; Jo 81 g g

~r

(Finnigan et al. 2003)



Storage measurement

Generally it is calculated using a vertical profile of 5 or more concentration

measurement points on towers (logarithmic distribution, denser close to the
ground).

And does it exist a “representative
point” where a vertical profile explain

B, [" 8e(z) i

R-T, Jo t we changes in the volume? Do we need a
- 4 setof profiles?
z
A Y
uc

(Finnigan et al. 2003)



Storage measurement

Generally it is calculated using a vertical profile of 5 or more concentration
measurement points on towers (logarithmic distribution, denser close to the
ground).

Or may be a compromise solution with

. P, h dc (Z)d_ denser spatial sampling close to the
. R-T, Jo t = we soil...
t
z
Ay

(Finnigan et al. 2003)



Storage measurement

Generally it is calculated using a vertical profile of 5 or more concentration
measurement points on towers (logarithmic distribution, denser close to the

ground).

h Or very easily just one point and we
g — P, dc (Z)d_ assume that the concentration
C — - .— o . . .
BT Jo ot variations are the same in the
volume...

~r

(Finnigan et al. 2003)



Storage measurement — analysis

ADVEX dataset

May-June 2006
‘P D o

Renon, IT

« sonic anemometer (U, v, W', @)™~
© MVS (multi valve system) CO,
and temperature

Three sites with multiple towers (to measure advection — see later) all with vertical and
horizontal profiles of CO,

Feigenwinter et al., 2008; Aubinet et al., 2010; Montagnani et al., 2010



Storage flux measurement strategy

Norunda

How much is it important to
correctly measure the storage
flux? And which is the best
setup compromise?
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Storage flux measurement strategy

B - 1 profile + 4 points ground = 1 profile B - No profile, single point
Norunda Renon 3 Wetzstein
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Storage flux measurement strategy

Not as bad as one could
expect but a profile is

needed...

Are there situations
where it can be

avodided?

Nicolini et al. 2018
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Storage magniture and turbulence

Location ID
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Concentration evolution during 5 days in 6 locations along a transect. In blue u*

data: S. Sabbatini and H. van Asperen



Advection measurement...

As said the ADVEX data were
collected to try to measure
and quantify directly the
advection but it was
impossible due to large ik b Main Tower M

MPI-BGC Tower D
MPI-BGC
scatter (random error). FUSAGX

Agricultural and Forest Meteorology 150 (2010) 655-664

. ’ . . w Agrikculueel
Contents lists available at ScienceDirect and

Forest Meleocology
T

Agricultural and Forest Meteorology .

FI SEVIER journal homepage: www.elsevier.com/locate/agrformet

Direct advection measurements do not help to solve the night-time CO-
closure problem: Evidence from three different forests

M. Aubinet®*, C. Feigenwinter*®, B. Heinesch?, C. Bernhofer, E. Canepa, A. Lindroth®,
L. Montagnani "8, C. Rebmann", P. Sedlak’, E. Van Gorsel




Advection and ustar filtering

The most used and consolidated method to take into consideration the advection
component in the fluxes is the ustar filtering (although it is still controversial)

The general idea is to identify the data that are potentially affected by relevant advection
phenomena, remove these data and fill the gaps (if needed) in a later stage.

Ustar is in fact a variable that indicates the turbulence level, so:

larger ustar — more turbulence — more turbulent fluxes — less advective fluxes

We need to identify a threshold of ustar that can be used to define data we have to remove
(all the data acquired when ustar < ustar_threshold)

Ustar threshold is site specific, often
year specific and must be estimated
starting from the data




ustar threshold calculation

General assumptions and idea:

1. During night...

2. ...if turbulence is sufficient...

3. ...ecosystem respiration is controlled mainly by temperature and time...

4. ...soturbulence (ustar) should not affect respiration...

5. ... Ifthere is advection, respiration and ustar are not any more independent...

6. ...so we can check the respiration-ustar dependency



ustar threshold calculation

General assumptions and idea:

1. During night...

e Select only nighttime data

2. ...if turbulence is sufficient...
« USTAR
3. ...ecosystem respiration is controlled mainly by temperature and time...

* NEE for similar temperature and similar season
4. ...soturbulence (ustar) should not affect respiration...

* NEE constant respect to USTAR

5. ... Ifthere is advection, respiration and ustar are not any more independent...

e Direct relation USTAR-NEE

6. ...so we can check the respiration-ustar dependency
* Find where (which USTAR) NEE become independent



Ustar threshold selection

2
O
16 O o o e
= 0 O
O o - O
® Q
1.2
é 8 X selected as ustar threshold
0.8
®
0.4
@
®
0 | [ X [ | | [ [
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
ustar

Can be done manually, however better to use objective, reproducible and automatic methods.
Different methods exists (e.g. Reichstein et al. 2005, Gu et al. 2005, Papale et al. 2007, Barr et
al. 2010, Pastorello et al. 2020)



Ustar threshold uncertainty

What is also important is to estimate an uncertainty in the threshold found. Bootstrapping
technique is one option that can be used.

30
: : BE-Vie 2001
25 - | | In the bootstrapping you repeat
| | the analysis several times using
" 20 - ' | different bootstrapped dataset:
8 | | in each bootstrapping step, the
@ 15 - ' ' whole dataset is sampled N
,5":’ | | times (where N = length dataset)
10 - ' | where each half-hour can be
] | drawn several times.
5 1 | !
I I
0 . T . . . = - .

0.05 010 0.15 0.20 0.25 0.30 0.35 040 045 0.50

Papale et al. 2006 Ustar threshold

5%, Median, 95% percentiles are selected as u*-thresholds to assess the uncertainties



Storage and ustar threshold

Green = Fc

Blue = Sc

Red= NEE (Fc+Sc)
Flux

e — >

u* th. NEE u* th. Fc ustar

So, first the storage correction, then the ustar threshold calculation!



Gap-filling of fluxes timeseries

Just to be clear: gap-filling means imputation, estimation of
a missing value in order to obtain a gap-free series of data.

Often the word “gap-filling” is used to indicate the whole
post-processing of data: this is not correct.



Gap-filling of fluxes time series

Ustar filtering removes data, some times also a large amount of data. These gaps are added
to other missing data periods caused by different reasons

Which gapfilling methods are available? Do | need something complex?
Where are the gaps coming from?
- Power problems
- Instrument problem\ NOT RANDOM
- Calibrations / DISTRIBUTED
- Quality tests and filtering

For this reason we can not just calculate the average of the integration period

We need other methods




Do we need to fill the gaps?

Gapfilling is not always necessary, but it is necessary when we need to integrate
to daily-annual scales

APPLICATION GAPFILLING?
Functional relations NO
Budgets YES

Models parameterization | YES (if daily) / NO (if half-hourly)
Models validation YES/NO (output time resolution)




Which gapfilling methods are available?

NLR: Non-Linear regressions

Based on parameterized non-linear equations which express (semi-)empirical
relationships between the NEE flux and environmental variables such as temperature

and light.
Commonly one equation for GPP and one equation for Reco, parameterized using the
data available.

(LT N—(1/T) : 3, PPFD
(T = pP2((1/Tet)=(1/T)) Arrehnius GPP = f(PPFD) = ﬂ'— Michaelis - Menten
f(T) = p J S ) PPED + ,
f(T) = ¢, e#2/#3=T) | |oyd - Taylor

o Regression parameter can be constant for

Logistic (Chen et al 1999)

T) =r—————= . .
HT) 1 + ex(@s=T) periods varying from one to two months.

f(D') =y, + y,sin(D’) + yscos(D') + y,sin(2D')

}- yssin(2D')

Seasonal dependence Second-order Fourier function
(Hollinger et al 2004). D’=21T x DoY/366



Which gapfilling methods are available?

LUT/MDS/SPM : Look-up Tables

In a look-up table, the NEE data are binned by variables such as light and temperature
presenting similar meteorological conditions, so that a missing NEE value with similar
meteorological conditions can be “looked up”’.

The standard LUT are based on fixed intervals, but there are enhanced methods like
Marginal Distribution Sampling (MDS) where the LUT is built around the gap with a
dimension and variables that are also not fixed

+/- 7,14, ... days; Time
||
o +/- 14-140 days; Rg

|| || | | |
+/- 21-140 days; Rg, Ta, VPD
| | || | ./ | | || | ||
+/- 1 day; Time
|
+/- 7 days; Rg

+/- 14 days; Rg, Ta, VPD
+/- 7 days; Rg, Ta, VPD
Dataset

MDV: Mean Diurnal Variation

Interpolation technique where the missing NEE value is replaced with the averaged
value of the adjacent days at exactly that time of day



Which gapfilling methods are available?

Machine learning

The machine learning are statistical tools, highly flexible and not-linear that can be used
to reproduce complex unknown relations between drivers and target (given that the
correct drivers are selected)

They are based on training datasets (with drivers and target variables) that are used to
parameterize the models. Artificial Neural Networks and Random Forests are two
examples of largely used machine learning tools

Input dataset I
|
Input layer e Y T~
A A AN
o R o RN e SR
Sbdodbdd dbdbdbidd dbdbdbde
Hidden layer ASASAS LR A AL R LY A 600006060
? (f Output layer A«
®= unit s
Output \\ = connection Y



Gapfilling: the gap filling comparison (15 different methods)
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RMSE for different sites and different methods (50 scenarios)



The fingerprint plots

Nighttime Growing season ..
4 A Carbon Dioxide Exchange
0 T 71 TRL ] T
!\ ||f||| u | | li j "\F "‘n! h,
| | l* nl b i HI '-ur l\' fl
> 6 ' | AR AR TRl Rl
o} e I ' Il gt |u| il .‘ l“l
e ‘ d’;!.\!(' i Che g 1}
.."_:, ! ‘ ‘ 0 IIM ' 6‘ ! ! |l l|
B 20 ¢ ! ‘:'. Il‘l ! I l) 7
0] iy, MR, |
Esl ' N -
10 Al T
AR o Ly f | SN AT
24 (IR !.h' 1"“2(1!‘:& '?.':l.' “l ] Lo e !Hl;".lml"j'l'
2003 2004
Daytime bg

Papale et al. 2015

Source of CO,

Neutral

Sink of CO,



0OL0¢

-60

30

oLoe

600¢

0Loc

6002

800¢

)

6002

8002

~900¢

8002

2002

500¢

1002

2002

00

9002

sooc

£00¢

<
o~

00Z

24

IT-Be2 IT-MBo

IT-BCi



9002 S00¢ €00¢ looc 000z

800 00

1002

8002




Partitioning
RECO and GPP estimation from eddy data

With eddy covariance we are measuring NEE but using
partitioning methods it is possible to assess also the two main

components photosynthesis (GPP) and ecosystem respiration
(RECO).

There are two main approaches generally used:

e Based on night time data, extrapolating RECO measured at
night to daytime (Reichstein et al. 2005)

e From day time data, using a two components model of NEE

with light-response curve and exponential function for
respiration (Lasslop et al. 2010)



Photosynthesis and light

Amax

Photosynthesis

Amax = Maximum assimilation
a = quantum efficiency
Rd = dark respiration of leaves

g = compensation point

ax PAR x Amax
a*x PAR + Amax

Phot=

Michaelis - Menten
1913



Temperature effect on respiration

Eq
Q10 function
6 4+ Arrhenius
-= Modified Arrhenius
—+ Lloyd and Taylor

Ratkowsky
=
_9 4 L 1 K
© o
2 Vot // .
s /A
g/
2+ J-’"‘,fﬁ “
‘i;‘_*”'
O_
I 1 1 1 I 1
0 10 20 30 40 50
Temperature

Different models proposed for the
temperature-respiration relation.

Lloyd and Taylor (1994):

RQCO — RrefeEO(l/(Tref_TO)—l/(T—TO))

R,., = ecosystem respiration

R = respirationat T .

E, = activation energy

T . = reference temperature
T,=-42.06 °C



Night-time method

Reco - ref‘iEO‘il/(Tref_TO)_l/(T_T()))
T0 =-46.02 °C (Lloyd & Taylor, 1994)
T =10°C

. 3

Nighttime eddy covariance measurements

.

Estimation of E  (temperature sensitivity) and R__

. B

First estimate EO then Rref both from short time windows



Night-time method

Estimation of temperature independent respiration level R .
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Night-time method Eo.long oy shor o
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Daytime based partitioning algorithm

Data: Hainich ZQOO

O',BR 1 1 20f '
NEE = ——— 2 + 1, exp (EO ( -~ )) o YUl Avgust _
a’qg +p Tet=To  Tobs —To SN
S0 R A, [P
Light response Lloyd& Taylor 52 Tt 5 #iﬁ;{
function respiration model 2 0 DS A I
—40F + & 3
_s0f o
0 200 400 600 800 1000
Rg [Wm-2]
Water stress effect on stomata closure (photosynthesis
reduction) is added varying the maximum C uptake with VPD
(VPD, =10 hPa) 2.0
= L5f
5= | Bo-exp(=k (VPD ~VPDy)) if VPD > VPD; g
Bo otherwise ol
0.0l " ;

0 10 20 30 40
There are five parameters to estimate (equifinality problem), VED [hPe]
E, estimated using night-time data, the others using four days

mobile windows on daytime data only.

Lasslop et al. GCB (2010) for details



The negative
GPP...

When partitioning based on night-time respiration extrapolation is used, GPP is
calculated as:

GPP = Reco — NEE

Since during night there is only respiration

NEEnight= Reco and GPnght= 0

However it happens that

1) NEEnight > Reco and from the calculation we have GPP during night
2) Reco - NEEOlay < 0 and we have negative GPP

What to do?

Consider the random uncertainty and don’t filter the data
otherwise a bias is introduced!!



Partitioning using machine learning methods

NEE
RECO {Lz_:/\ GPP N eostin

. PROD <‘[\
RECO drivers: 3 Logsig -4
° ) ’ ) ) Logsig |-

TA, TS, SWC, WS, WD ¥

e DOY
* Daily NEEnight mean D
GPP drivers: ' ' q

 TA, SWC, WS, WD

* Daily NEEday mean

« SW_POT
(transformed)

* +SW_IN

Tramontana et al. 2020



Results: mean diurnal cycle agreement GPP

A GPP (umol CO, m?s™)

GPP (umol CO, m?s™)
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12 24
Time

Higher fluxes predicted by NT and also NN_

opposite in the afternoon (in particular in NN_

Tramontana et al. 2020

in the central part of the day respect to DT method
— VPD effect? Prescribed response for GPP in DT
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Machine learning and SIF additional constrain

Input

label

Input

Ingq > ER
INgpn » GPP - - -
Input

NEE=ER-GPP

Y

31 sF

Input Layer O GPP & ER Subnetworks
[:, Final Output () SIF Subnetwork

Zhan et al. 2022



Gap-filling and partitioning

What happens in case of management,
disturbances, heterogeneity?



Remember: partitioning is a modeling exercise and perfect models
don’t exist. The uncertainty in the partitioning is in line with other
models and important to be considered...
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Where is the uncertainty?

(a non exhaustive list... assuming no errors in measurements)

 Where do | put the tower? -> Location (footprint)

* Which height and direction do | put the system? -> footprint
* Which sensors do | use? -> instruments

* How do | collect the data? -> setup

* How do I calculate the fluxes? -> raw data processing

* How do | measure the storage? -> storage

* How much is the random uncertainty? — random uncertainty
* How do | calculate ustar threshold? -> ustar method

* How much is the uncertainty in ustar? -> ustar threshold

* How well ustar filter our advection -> ustar application

* How do I fill the gaps in the data? -> gap filling

* Which method do | use for partitioning? -> partitioning method



New NEE processing and uncertainty estimation
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FINAL REMARKS ON PROCESSING

Post-processing is important and if not always correctly applied the results
could be completely wrong

Data quality should be always checked carefully also using consistency tests
with correlated variables (e.g. Tair, Tsonic, Tsoil, the radiations, Precip and SWC)
and looking to the whole time series

Ustar filtering is a major source of uncertainty and for this reason special
attention needs to be used when applied

Partitioning is a modeling exercise and for this reason also with high
uncertainty

The storage measurement is important. Remember to monitor it at you site
(also for other gases...)

Use of different partitioning methods helps to better understand and quantify
the uncertainty, in particular the one using different data (daytime and
nightime)
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