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Very briefly

HOW TO MAKE A DATA
ASSIMILATION SYSTEM




You will need...

A model (today we can use SIPNET)

— The model must estimate the type of data you
wish to assimilate.

— It must also be appropriate for the system
 The data (estimate the UNCERTAINTY!)

— The data can be any data (today we'll stick to
flux data mostly)

 An estimator (some iterative ‘cost’ function)




Don’t forget the acronym!

AssimilatioN Kalman filter for Understory Respiration
(ANKUR)

Kalman Interactive Model (KIM)
Montecarlo Initiated Kalman Estimator (MIKE)

Data Assimilation of Nitrogen LImination of Carbon
Assimilation (DANICA)

ANnual DroughtY Realtime Experimental Wetlands
(ANDREW)

Data Assimilation of Vegetated Ecosystems (DAVES)
Ecosystem Demography (ED)
Thermal Random Evaporation from Vegetation (TREV)




A couple of examples of applying data assimilation
that illustrate some pitfalls to address some
science questions

1. Optimizing fluxes

2. Inverse parameter estimation

3. Using an optimized model to test model
structure (Big hypotheses)




Ecosystem models

All models are wrong

(but some of them are useful)




What type of model would be useful?

* | like the model to be process based
« So we can learn from failure & try to predict

* Should be simple to avoid over-fitting
 Few parameters
 Also runs quickly!

* Needs to calculate the data you want to

assimilate
« So we can directly compare data to the model output

* Needs to be driven by readily measured

climate variables
- If you want to use it all flux S|tes =




The Simplflied Photosynthesis and EvapoTranspiration

(SIPNET) data assimilation system B

Primary
Productivity

|

Precipitation

Snow Pack
Soil Water Equiv.

Interception &
Evaporation

No:
Snow

Yes:
Rain

Fast Flow Throughfall Snowmelt
drainage + *
Soil Water 4
Surface Layer Surface evaporation
Surface drainage *
Soil Water | 4
Root Layer ) Transpiration

Rootzone drainage +

 Twice-dalily time step
(day & night)

» Goal: keep model as
simple as possible

Autotrophic Hetrotrophic

RespiTration Respiration
) SOC
Leaf Carbon | [TTeafTitter ™) g1 |
Woody Carbon\ > 2
J |woody debris a3 |
v
turnover Microbial
‘ Fine Root C } fine root Carbon
L ) turnover

Photosynthesis:
f (Leaf C, T4, VPD, PAR, Soil Moisture)

Autotrophic Respiration:
f (Plant C, T,i)

Heterotrophic Respiration:
f (Soil C, Tgoil, Soil Moisture)



The Simplflied Photosynthesis and EvapoTranspiration
(SIPNET) data assimilation system
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Driven by 8 climate variables (5) atmospheric vapor pressure
(1) average air temperature, (6

(2) average soil temperature
(3) Precipitation

(4) PAR

) atmospheric vapor pressure deficit

(7) vapor pressure deficit between the soil
and the atmosphere

(8) wind speed




Section 1

OPTIMIZING FLUXES




Niwot Ridge, CO
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Parameterization®

* First guess parameters
— Diligent field work
— Long hours of field work
— Guess work—
— Wisdom drawn from long experience at
working at a site

2
*We'll come back to this later



Graph default SIPNET output plus
observed fluxes
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Graph default SIPNET output plus
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SIPNET at Niwot Ridge

WHAT HAPPENS WHEN WE
ASSIMILATE NEE ESTIMATES
FROM THE TOWER?




Model-data error is defined in terms of likelihood (L),
and minimizing this error is like maximizing the
likelihood:

n 1 (~ — 11)\2 2
LT Cimm)?/20

i1 \ 2o

where n is the number of data points and is the
standard deviation on each data point.

The smaller the model residual the better
The larger the number of points the better




Random Change

Random Change
Parameter set 4

Random Change
Parameter set 5
Parameter set n

Parameter set 3

Parameter set 2

Parameter set 1
Random Change

e

Output Output Output Output Output AC)'utput

The model output is compared to the measured flux data after each
iteration. Then one parameter is changed by an incremental amount
the model runs forward again and if the new output is a better fit the
parameter set is saved...after many thousands of iterations an
optimal parameter set is reached
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W~ Observed and modeled NEE and
g components of NEE for the six-year
e E observation period

29

O =

The observed NEE was taken from
the Niwot Ridge eddy flux record.
The modeled NEE, GEE and Rg
were derived from the SIPNET
model conditioned on the entire six
year record of the eddy fluxes (from
Sacks et al. 2007)

Modeled NEE
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Modeled GEE
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Modeled R,
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MODIS at Niwot Ridge

SCALING ECOSYSTEM
PROCESSES WITH
SATELLITES




GPP estimated from the SIPNET model conditioned on tower
fluxes and GPP estimated using MODIS

5

SIPNET GPP (g C m2 d-1)
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SIPNET at Niwot Ridge

WHAT HAPPENS WHEN WE
ASSIMILATE AND ET
ESTIMATES FROM THE
TOWER?




The Simplflied Photosynthesis and EvapoTranspiration
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Driven by 8 climate variables (5) atmospheric vapor pressure

5
(1) average air temperature,  (6) atmospheric vapor pressure deficit

(2) average soil temperature  (7) vapor pressure deficit between the soil
(3) Precipitation and the atmosphere

(4) PAR (8) wind speed
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~ Moore et al 2008
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We need to be careful

If we push the model
around sometimes we -,
cause other part of the - ¥ 2
model to behave
incorrectly

*Choose carefully which processes
you are interested in

*Choose carefully which
parameters you can constrain

*Make very careful measurements
(garbage in = garbage out)



Equifinality

There are many ways to explain a
change in flux — increased uptake,
reduced release, change in the
distribution of sinks, change in the
residence time of sinks etc.

Observed Outcome
(atmospheric
concentration? NEE?
biomass?)




SIPNET at Niwot Ridge

HOW CAN WE CHECK TO SEE
IF OUR ASSIMILATION
MODELS ARE A GOOD
REPRESENTATION?




Trust...but verity

Data used to tune a
model cannot be used to
validate the same model.
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Fig: Volumetic sap flow of Pine, Fir and Spruce trees in Western (upper panals) and
Eastern (lower panals) portions of the Niwot Ridge experimental forest. The sap flow
values are separated into night and day to allow comparison with SIPNET model output.
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Using only NEE to parameterize the model
gives VERY poor estimates of Transpiration

Transpiration cm water day™
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Optimized Model reproduces
measured transpiration
This could be used to predict water
use in different temperature and
precipitation regimes
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~ Moore et al 2008



© SIPNETNEEET June
03| ® Sapflow Estimate
2 @
01t}
e Y Y o Ve TR
g %gg, | b A V
c [ e o« 7. il We think that this mismatch is
S o1r @ o @ because the model DOES NOT
é ) e > KNOW that cold temperatures (in
g 03+t
% 02t €
S o g@¥n -
N Optimized Model reproduces
w| Sept measured transpiration
02| . % - This could be used to predict water
01 | gfﬁzi@-f ! use in different temperature and
0.0 - b ' '.

precipitation regimes

05 1.0 15 20
D S

D)l kP
» :"" f‘k

TREN E. ;
. -
2

Moore et al. (2008) Ag. Forest Met.



© SIPNETNEEET June
03} ® Sapflow Estimate
TR
01+t ’
T> 0.0 : . : July
® 031 : %o.o 1
© 5o 0 . ° 8%30 oé |
= oS * o
O o1t o °
C ®
C_) 0.0 : ; : \
® o3} @
S
o 02t
C
= oo 3\\, .uzed Model reproduces
03| O measured transpiration
02|  his could be used to predict water
01t gy use in different temperature and
© NTOT .
00 L =— — precipitation regimes

2 ¢ iy
Moore et al. (2008) Ag. Forest Met.



© SIPNETNEEET June
03} ® Sapflow Estimate
TR
017 ’
T> 0.0 : IJUIy
® 031 : go.o 1
© o2l L 8%30. oé
= o °
O o1t @
S 0.0 A
= - Aug
g 03¢ ]
& 02} €
(an @
E 01| .§g e %N o
. . . Optimized Model reproduces
t . .
i . measured transpiration
02| . % - This could be used to predict water
0.1 | OQ@O@%@-J) - use in different temperature and
Q ® .“4‘ [ J
0.0 ' '

precipitation regimes

e

05 1.0 15 20

D (KB , _raan =
D e L < -

-
e
e

.
e

THEN

Moore et al. (2008) Ag. Forest Met.



Ray Leunning always said
that a flux scientist should
"Know thy site”

For the same reason
"Know thy model”




How are the carbon and water cycles linked in SIPNET?

if (potGrossPsn < TINY) { // avoid divide by O
*trans = 0.0; // no photosynthesis -> no transpiration
*dWater = 1; // dWater doesn't matter, since we don't have any photosynthesis

}

else {
wue = params.wueConst/vpd;
potTrans = potGrossPsn/wue * 1000.0 * (44.0/12.0) * (1.0/10000.0);
// 1000 converts g to mg; 44/12 converts g C to g CO2, 1/10000 converts m*2 to cm”2

removableWater = soilWater * params.waterRemoveFrac;
if (climate->tsoil < params.frozenSoilThreshold) // frozen soil - less or no water available

rfemovabIeWater *= params.frozenSoilEff; /* frozen soil effect: fraction of water available if soil is
rozen

(assume amt. of water avail. w/ frozen soil scales linearly with amt. of
water avail. in thawed soil) */
if (removableWater >= potTrans)
*trans = potTrans;
else
*trans = removableWater;




How are the carbon and water cycles linked in SIPNET?

Water use efficiency is calculated using
an estimated constant modified by Vapor
Pressure Deficit

_—

wue = params.wueConst/vpd |

potTrans = potGrossPsn/wue
dWater = Trans/potTrans
*gpp = potGrossPsn * dWater;




How are the carbon and water cycles linked in SIPNET?

wue = params.wueConst/vpd
[potTrans = potGrossPsn/wue]|

dWater = Trarm\s%pm\TLans

g pp pow‘ Potential transpiration is calculated as

the ratio of Potential Gross
Photosynthesis and Water Use Efficiency




How are the carbon and water cycles linked in SIPNET?

If there is enough water Transpiration is the same as potential
Transpiration... if water is limiting Transpiration is reduced
accordingly the ratio dWater is a measure of this reduction

potTrans = patGrossPsn/wue
| dWater = Trans/potTrans |

*gpp = potGrossPsn * dWater;




How are the carbon and water cycles linked in SIPNET?

wue = params.wueConst/vpd
potTrans = potGrossPsn/wue
dWater = Trans/potTrans
*gpp = potGrossPsn * dWater]|

/

GPP is calculated as Potential Gross Photosynthesis modified
by the ratio of potential transpiration to actual transpiration
(i.e. GPP is reduced if there is insufficient soil water)
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Conclusion

« US T giv C
estimateof [ranspiration —

* There is INFORMATION in the ET data
which can tell us something about
Transpiration.




Section 2

ESTIMATING PARAMETERS
AND INITIAL STATES




Tablel: SIPNET parameters and initial conditions that are allowed to vary in the
optimization. and their allowable ranges. The ranges assume a uniform prior distribution.

Symbol Definition Range

Initial Pool Values:
Wso Imitial so1l moisture content (fraction of Wg ) 0-1

Photosynrhesis/Respiration Parameters:

A Mazxumum net CO» assinulation rate (nmol CO, g’l (leaf biomass) s'lj 0-—34
Er Foliar mamtenance respiration as fraction of A, (no units) 0.05-0.30
T in Minimum temperature for photosynthesis (°C) -8-—8
T ot Optimum temperature for photosynthesis (°C) 5-30
Q10 Vegetation respiration Qi (no umts) 14-26
T, Soil temperature at which photosynthesis and foliar respiration are shut -5=5

down (°C)
Eveo Slope of VPD-photosynthesis relationship (kPa™) 0.01-025
PPFD; Half saturation point of PPFD-photosynthesis relationship (mol m™? day™?) 4 —27
NPPp Fraction of NPP allocated to leaf growth (no units) 0-1
Ka Wood respiration rate at 0°C (g C g'] C 7,-'1"1} 0.0006 —0.06
Kx Soil respiration rate at 0°C and moisture-saturated soil (g C g” C yr') 0.003-06
Q10s Soil respiration Qip (no umnits) 14-5
Moisture Parameters:
f Fraction of so1l water removable 1in one day (no units) 0.001-0.16
Kwue VPD-water use efficiency relationship (mg CO; kPa g'l H,0) 0.01-109
Ws, Soil water holding capacity (cm (precipitation equivalent)) 0.1-36

Ry Scalar relating asrodynamic resistance to wind spead (no units)® 1 —1500




Symbol Description units Optimized Parameter Allowed Range
(0(0) Ccw low upp
fraction of

soilWFraclnit Initial soil moisture content Soil Water Content 0.39 0.80 0 1

aMax Maximum net CO2 assimilation rate nmol CO, g! leaf biomass s°! 4.74 4.94 0 34
Foliar maintenance respiration as a

baseFolRespFrac fraction of 4,4 - 0.10 0.13 0.05 0.3

psnTMin Minimum temperature for photosynthesis ~ °C -2.91 -3.64 -8 8

psnTOpt Optimal temperature for photosynthesis L 14.59 18.75 5 30

vegRespQ10 Vegetation Respiration Q - 1.45 1.41 1.4 2.6
Soil temperature at which photosynthesis

frozenSoilThreshold and foliar respiration are shut down °C 0.02 0.02 -5 5
Slope of VPD-photosynthesis

dVpdSlope relationship kPa'! 0.12 0.15 0.01 0.25

halfSatPar PAR at which photosynthesis is half A,,,, Em?2d! 7.34 8.17 4 27
Fraction of mean NPP allocated to

leafAllocation leaves - 0.42 0.52 0 1

baseVegResp Wood respiration rate at 0°C gC g PlantC d! 0.03 0.03 0.0006 0.06
Wood respiration rate at 0°C without

baseSoilResp moisture stress gC gl soilC d! 0.01 0.00 0.003 0.6

soilRespQ10 Soil Respiration Q = 5.00 4.69 1.4 5
Fraction of water removable in a

waterRemoveFrac timestep - 0.04 0.05 0.001 0.16

wueConst VPD-water use efficiency relationship (mg CO, kPa g'! H,0) 85 8 0.01 109

a -

011 W] -
N \~ s

rdConst

.#’::Jk; g capacit

= v %
b R e 'calar relating ‘aergdynamic resistance

to wind speed

cm water



rdConst soilWHC wueConst waterRemoveFrac
4000 4000 5000 10000
2000 N 2000 |h| { ‘ 5000 .
0 0 0 0
1000 1500 2 4 6 002 004 0.06
soilRespQ10 baseSoilResp baseVegResp leafAllocation
10000 5000 5000 10000
5000 ‘ l . 5000
0 0 0
0 0.01 .02 0 0.01 002 0 0.5 1
halfSatPar dedSIope frnggSoulThreshold vegRespQ10
10000 10000 4 5000
5000 5000 2 1J
; A " ‘ ” il L
0 10 20 0 0.2 0.1 0.15 0.2 1 1.8 2
psnTOpt psnTMln baseFolRespFrac aMax
10000 10000 5000 10000
5000 .l 5000 5000 .
0 0 ‘ 0 0
10 20 30 -10 -5 0 0 0.2 0.4 0 2 4
soilWFraclnit
10000
5000 ‘
0
0 0.02 0.04




Value of posterior distributions

Well constrained

Data contains no
information

Edge hitting — probable
model structure error




SIPNET at Niwot

USING AN OPTIMIZED MODEL
TO TEST MODEL STRUCTURE




How do we know there’s a
problem?

« Parameters cannot be optimized
effectively (edge hitting parameters)

 Pattern to the mismatch between model

and data.

— Does the pattern of residuals look like another
process?




Variation in model structure

What's the best way to model a process or
a set of processes?

PhenOlogical methods (Harvard Forest Braswell et al 2005

— Richardson et al various)

Variations in how respiration is modelled
(Niwot Ridge, Sacks 2006, 2007)

Below ground carbon cycling (Niwot Ridge, Zobitz et
al 2008)




Random Change

Random Change
Parameter set 4

Random Change
Parameter set 5
Parameter set n

Parameter set 3

Parameter set 2

Parameter set 1
Random Change

e

Output Output Output Output Output AC)'utput

The model output is compared to the measured flux data after each
iteration. Then one parameter is changed by an incremental amount
the model runs forward again and if the new output is a better fit the
parameter set is saved...after many thousands of iterations an
optimal parameter set is reached
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Compare using information criterion.

Bayesian Information Criterion | Model structure

(BIC)

I Model structure I

I-»l Parameter estimation I I Model structure |<-|

I Optimization by I Modification of |

| Bayesian model
I feedback structure

model output
| _ Model-data 4—[ } I;esmtual
i eviation
fusion data

| Measurements I

CO, and water fluxes

BIC (Bayesian Information Criterion) =-2 . LL + K. In (n), where LL is the log
likelihood, K is the number of free parameters, and n is the number of data points
used in optimization




BIC (Bayesian Information Criterion) =
2.LL+K.In(n)

where LL is the log likelihood, K is the number of free
parameters, and n is the number of data points used
In optimization

Smaller is better!
Fewer number of (free) parameters is
better

Fewer points is better




Base No winter-time Seasonal Add’l litter Moisture-

model  shutdown of psn., Ry pool independent Ry
foliar resp.
Best log -2404.2 -2614.7 -2374.0 -2407.6 -2415.7
likelihood?
RMS error® 0.555 0.597 0.550 0.556 0.558
# free 32 31 35 35 32
parameters
BICe 50634 5476.5 5027.0 5094.1 5086.4

Model-data comparison statistics from running five versions of SIPNET using the best
parameter set retrieved from the optimization on each model. See text for description of
model variations.

(a) Larger (i.e. closer to zero) numbers mean greater likelihood.

(b) Root mean square error in g C m-2 over a single time step.

(c) BIC (Bayesian Information Criterion) =-2 . LL + K. In (n), where LL is the log likelihood,
K is the number of free parameters, and n is the number of data points used in optimization
(2894). A lower BIC indicates a model with greater support from the data.

e RS s -
Sacks et al 2006 Global Change Biology,.12: 240-259 ...- -




a) Base model Photosynthesis
1

Three model structures
Plant wood carbon] — » | Plant leaf carbon | __ for deallng W|th belOW
ground C cycling
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Model is optimized based on the first three years
of data and used to predict the remaining years

.

o

—

F(gCm?)

o

e - . e
-!‘\‘ s ot 1 i

Zobitz et 4. (2008) Ecosystems. -



Table 4: Model comparisons using the optimized parameter set retrieved from each model

T.
Model: Base Roots Quality Microbes
Log likelihood (LL): -1462.5  -1437.8  -1423.7 -1634.7
Root mean square error: 0.45 0.44 .45 0.48
Number of data points (n): 4463 4463 4463 4463
Number of parameters (M ): 17 23 23 24
BICT: SU6S 041 069 2471

Validation data were used to calculate these values. The root mean square error is caleulated
from the squared difference between the measured and modeled difference for F and ET. (1):
The Bayesian information criterion (BIC) equals —2LL + M In(n). A lower BIC indicates a
model with greater support from the data.

TREN . et .

-
.

Zobitz et al (2‘00"53) Ecd'syst;ms* .




Contrast between Day (psn) Separation of

and Night (no psn) allows NEE into GPP
separation and Re
(Sacks et al 2006, 2007)
Seasonal co-ordination of GPP
Resp.orlmse.s of NEE to and ET (obs) allows a reasonable
precipitation change response to be extracted

(Moore et al 2008)

Above and below ground Flux data alone does
processes confounded in not constrain below

tower based measurements ground processes well
(Zobitz et al 2008)

NEE does not Biomass, Soil Resp, LA, litterfall
constrain Iong term can be used to constrain different

processes parameters in the model

oy ¥

Richardson et al. 2010
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g sl . Howland Forest
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1998 2000 2002 2004 NOTE: Calibration / validation
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< / / / i / Fig. 4 Time series. Modeled leaf area index, LAI; litterfall, L,

0 ' : : [ | (cumulative since last collection); annual woody biomass increment,

_ 1998 2000 2002 2004 ACy; and annual cumulative net ecosystem exchange, (NEE) of
£ -400 carbon, with uncertainties (90% confidence interval), for the Howland
(;; 900 [ Forest. Modeling was conducted with the DALEC model, constrained
W (calibration period 1997-2000; validation period 2001-2004) with a
2 200 /} variety of different data streams (Run 8 in Table 2); actual
2 ool /} /\ f NEE measurements are indicated by filled circles, with error bars
© I indicating estimated measurement uncertainties. For observed cumu-
B 0 F--af--~cf-~F-- \/ -~f- \/ lative NEE, the annual sum was estimated by gap-filling the 30-min
3 2000 2002 2004 eddy covariance record using a standard empirical model
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Rlchardson et aI»‘(ZO’IO%hmatmg parameters of a.forest egosygtem C model.with Migasurements of stocks and fluxes as joint
constraints. Oecologia DOI: 10.1007/s00442-010-1628-y




We can evaluate models at multiple timescales and
using multiple datasets

continent

region/biome Biogeo-

chemistry
A ppt T / Species,

Functional
Type
landscape R, uR L /////’ P
Leaf Area, N/C,

Ps capacny

canopy
Biophysical model

Spuooas
shep
sieak

Sa1INJURD =

Diagram modified from: Dennis Baldocchi



DOING DATA ASSIMILATION
WITH A LAND SURFACE

MODEL

Fox, A. M., Hoar, T. J., Anderson, J. L., Arellano, A. F., Smith, W. K., Litvak, M. E., ...
& Moore, D. J. (2018). Evaluation of a data assimilation system for land surface
models using CLM4. 5. Journal of Advances in Modeling Earth Systems, 10(10),

2471-2494.
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We assimilated LAI
from MODIS into
CLM for one of
Marcy’s sites in New
Mexico




*Assimilating LAl and
BIOMASS shows that
the model is quite
biased (compared to
the observations)

eAssimilation removes
that bias

‘We can then examine o we w00
what the model

needed to do so that it

matched the BIOMASS

and LAl

: Fox et al 2018




*Assimilating satellite
derived observations
of leaf area allows us
to estimate quantities
that we DO NOT
observe

Here we show litter
carbon and soil carbon
that the model infers
based on the
correlation between
LAI (leafC) and Biomass
(deadstem)
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GO BIG OR GO HOME!!!!

DOING DATA ASSIMILATION
WITH A LAND SURFACE
MODEL FOR THE GLOBE

Fox, A. M., Huo, X., Hoar, T. J., Dashti, H., Smith, W. K., MacBean, N., ... & Moore,
D. J. (2022) Assimilation of global satellite leaf area estimates reduces modeled
global carbon uptake and energy loss by terrestrial ecosystems. Journal of
Geophysical Research: Biogeosciences, €2022JG006830.




Assimilating global LAI estimates (LAI3g)

*We can also assimilate LAI for the entire globe and examine
the consequences for fluxes

60 Ensemble Members Global Mean

O -

LAI (m? 3
N w
ii ?
r

Error relative to GIMMS LAI3g

—
|

1 | | 1

o

RMSE (m?m™)
o
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|

Percent Change in Global LAl and Error

A LAl (%)
= o
\
4- N
o o
MSE (%)

HEN. . Ty e

A
Fox, Huo’et al 2022




ASS|m|Iat|ng global LAI estimates (LAI3g)

*Assimilating satellite
derived observations
of leaf area on average
reduced Community
Land Model estimates
of Leaf Area Index

This reduced global
a, estimates of gross
PrS primary production
w?  lu- by 18% and latent
== %o |.: heatflux by 6%,
omrmim P ¥ _I»  improving fit to

-50F X - . : : - -30

e e s o s 10 1% independent data sets

sol <

Fox, Huo et aI 2022




Assimilating global LAI estimates (LAI3g)

3.5

e e ot . Suggestions that
. . S s <2~ the default CLM
) ) a5 has poorly
_ ) 1 parameterized
s 1 v 0.5
5 e 7 | R | , GPP to LE
IE 0 20 40 60 80 0 20 40 60 80 0 5 10 15 20 25 30 35 . .
g _ T relationships for
g e : some Plant
°l 1 PR 2 3 Functional Types
4l g el . : 15- 2
S ¥ - 05 i é 0
0/.}. . . ‘ a AN ‘ ‘ ‘ 4L \ ‘ . ‘
0 50 100 150 0 5 10 15 20 25 30 35 0 20 40 60 80

LE (Wm™)

To check the credibility of the results we compare the fluxes in CLM
against the FLUXCOM product — this allows us to compare the fluxes at
the right scale — however we need to be mindful that the scaling
procedure introduces new factors! Maybe there’s some circularity here!

.—.}‘;? V “~ = - ‘.’;_‘(k

< :/ o ,“‘;‘ o
Fox, Huo et al 2022




Is CLM too simple?

WE COULD JUST KEEP
ADDING PROCESSES FOR
EVER - MAKING MORE
COMPLEX AND MORE
UNWIELDY MODELS
PROBABLY NOT A GOOD
IDEA




There is a misconception that models just suck in
data and produce insights.

While this has happened in the past, we think it's
better to have a more integrated approach

The Illusion: [ Data J = Modeling BEs 2 [Insights]

The old way!

. -_‘."‘;? RS e o ’:’_‘ k ;:

,“,\ Kasa .
an et al 2021
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Kyker Snéwm




The Illusion: ( Data ] o

Modeling s 2 ( Insights ]

The Reality:

Assess process &

Test process alone Test process with ESM

potential impact

Does the process behave
consistently through erammij =
t05'c Ing C t simple model t
space and tlme') \e - - S onnect simple moael to
P : 0‘\“\) - biogeochemical cycles and
» = : processes already in an ESM.

Consistent patterns Greater understanding
in measured data of process mechanisms

Understand process
connection within the

“d Numerical values for new
connections with cycles

Build simple model and explore if | -
it explains observed patterns.

- . Earth system bo
‘:h Is the process included in an Values for process rates; D ; Y £
] 2 : ) evelop new ecological
> ESM already? independent observations i e A =
i Existi Sl for evaluation d P Scale modeled process globally s
@ | ESM documentation x!stlng A and evaluate its performance m
- guide development . : B
.a ‘ across multiple regions. %0
|
8 . [ Gather data to quantify and drive | / Global drivers required Understand global a
S - - \| simple model at increasing scales. for new process importance of process x
O Is the process likely to impact . A
climate on ESM- relevant New or gxisting Emergence of generalized - e g
space and time scales? synthesized databases patterns ompare new and exis ng‘ £
- approaches; assess changes in V1
Estimates of process Gauge imminent global simulation.
climate ineractions RN | | Large-scale data for | Clarify consequences of
4 e /| evaluating model and differences between
performance ecological theories

<3

P . ’ s . e .
b —

T ke s
Kyker Snowman et al 2021




Criteria for adding new processes to Earth System Models

1)New ecological processes should influence Earth’s climate on a large scale or that the
process must result in changes to the carbon, water or energy balance of ecosystems.

2) Any new process cannot require more of the model than the model can currently
provide. For example, leaching of nutrients cannot be added to a model without a nutrient

cycle.

3) there should be sufficient understanding of the process and data to test the process
globally; adding poorly established theory or theory that cannot be independently verified
will cause potentially serious and unquantifiable bias.

4) the new processes must be governed by mathematics that are within reach of our
current computational capacity

5) there must be a dedicated community of researchers to develop, test and maintain the
process in the model.

- —’.’&\ - ’\_\-. . _”:: - r—

ET —

..... “

Kyker Snbwman et al 2021




Some candidate Land Surface Model processes to
iInvestigate

State Factors Interactive Controls Direct Controls
Centennial Decadal Interannual Seasonal Diurnal Instantaneous
Ecophysiology —
Microbial dynamics
—— Phenology ——
—— Allocation

Decomposition & nutrient cycling ——
Competition & Facilitation —

—Ecological sucession
—Soil development

When studying fluxes, ecological understanding is
very useful.

AN Ton | e M

Commentary on Kyker Snowman et-ali2021 7



Long term vegetation dynamics

NPP (kgC*m-2*yr-1)
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Some take home points

* Defensible estimates of GPP and
Rtot can be extracted from NEE,
though some extreme values are
missed (errors?)

* We can get the right answer for the
wrong reasons!

» Single datasets can only constrain
some of the parameters and can




Some take home points

* Retrieved parameter distributions help N
us understand how good our —

constraints are e

)l

* Model structures can be tested by
comparing the data-model mismatch i
Of Optlmlzed pa rameter sets e

* Multiple data sets can be used to ;
cross constrain parameters and
processes. Ei

- —d"&\ - s Q”‘:-- - -
v ¥ ors "\nl.q.




Some take home points

* Not all models NEED to be
complex — we need to think
carefully about which processes
we need to add

« We can assimilate STATES like
LAl and biomass and then
examine what the impact on the

fluxes are

* We can carry this out at the site,
regional or global level.
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