Gas Exchange Instrument theory

How the LI-6800 works and what it can tell you

Copyright © 2019 LI-COR, Inc. All rights reserved. Contact LI-COR for permission to redistribute.

Used by permission from LICOR (November, 2023)

How do we measure photosynthesis?

Photosynthesis

Gas exchange

Assimilation

How do we measure gas exchange?

First we need to measure the concentration of one or more gases

 $A'_{(v)} = 1 - e^{-k_{(v)}wl}$

w = density of the absorber A' = light absorption I = path length*v* = wavelength

k(v) = absorption coefficient

How do we measure gas exchange?

Infrared Absorption by Gases

 α + T = 1

 $\alpha = 1 - T$

 $\alpha = 1 - \varphi_A / \varphi_{NA}$

 α = absorptance T = transmittance Φ_A = transmittance in absorbing region Φ_{NA} = transmittance in non-absorbing region

Basic optical differential IRGA

 Φ_{NA} = transmittance in non-absorbing band

Gas exchange systems

Gas exchange systems

- Closed-transient
- Compensating
- Open flow through

Traditional open system

Basic parameters computed

- Fluxes from mass balance
 - A Assimilation rate
 - E Apparent Transpiration rate
- Additional parameters
 - g_{sw} Stomatal conductance to water vapor
 - C_i Inter-cellular CO₂ concentration

Mass balance in an open system

s = Leaf surface area $f_x = \text{Flux of gas x}$ $u_{in} = \text{Molar air flow entering the chamber}$ $u_{out} = \text{Molar air flow exiting the chamber}$ $x_{in} = \text{Mole fraction of x entering chamber}$ $x_{out} = \text{Mole fraction of x exiting the chamber}$

Steady-state gas model

$$sf_x = u_{out}x_{out} - u_{in}x_{in} + \rho v \frac{dx}{dt}$$

Dynamic model

When steady-state assumptions are met $\rho v \frac{dx}{dt}$ evaluates to 0

E = Apparent transpiration A = Carbon assimilation w_x = Water vapor mole fraction c'_x = CO₂ dry mixing ratio = $\frac{c_x}{1-w_x}$

E = Apparent transpiration A = Carbon assimilation w_x = Water vapor mole fraction c'_x = CO₂ dry mixing ratio = $\frac{c_x}{1-w_x}$ At steady state, the transient terms are zero and the equations are equivalent to what has always been used in the LI-6400/XT and LI-6800

Steady state versus dynamic

Following a step change in CO_2 the steady-state model gives a false flux driven by washout.

The dynamic model accounts for this and still shows zero assimilation.

Accounting for dilution

More on water corrections...

The Importance of Water Vapor Measurements and Corrections

Application Note #129

Water vapor is known to influence the measurement of carbon dioxide by infrared gas analysis in several ways, which can lead to significant measurement errors. Spectral cross-sensitivity due to absorption band broadening, and inherent instrument crosssensitivity can both cause overestimations of CO₂ mole fraction in samples containing water vapor when their effects are not accounted for. Dilution of samples by the addition of water vapor may not be important when measuring actual CO₂ mole fractions, but can lead to significant errors in flux measurements. In this note we describe the basis of each of these three processes and discuss how each can affect the measurement of CO₂.

Infrared Absorption by Gases and Absorption Band Broadening

At the sub-molecular scale the positions of atoms within molecules are not entirely fixed. As they move they stretch and bend their bonds, creating vibrations within the molecule. Energy differences between the possible vibrational states that result from this movement make it possible for the molecule to absorb infrared radiation. Changes in angular momentum as the molecule rotates about its axis can also cause infrared radiation to be absorbed. The energy differences resulting from changes in the vibrational and rotational states of the molecule cause fluctuations in its dipole moment. These oscillations interact with the alternating electrical field of electromagnetic radiation and if the frequencies of oscillation match, the radiation will be absorbed by the molecule.

Since the frequency of oscillation for electromagnetic radiation (v) is the inverse of its wavelength (λ_{e} T/v) and the various energy states that lead to its absorption by a molecule are the result of the molecule's structure, the absorption of infrared radiation is both wavelength and absorber species dependent. For a given molecular species, absorption of infrared radiation will occur in bands at various wavelengths across the infrared region of the spectrum (Figure 1A). Each of these absorption bands is comprised of individual absorption lines (Figure 1B) that result from rotational transitions, and have a generally Lorentzian line shape described by

 $k(v) = \frac{S}{\pi} \frac{\alpha}{\left(v - v_0\right)^2 + \alpha^2}$

where k(v) is the absorption coefficient k of radiation at frequency v, S is the line strength, $(v\!\!\cdot\!\!v_0)$ is the change in frequency across the absorption line and α is the absorption line half width.

Figure 1: Absorption spectrum of CO₂. Carbon dioxide absorption data from HITRAN96 (Rothman et al. 1998). A. The absorption spectrum of CO₂ in the infrared region of the electromagnetic spectrum. B. The absorption of CO₂ in the 4.2 µm region.

For infrared gas analysis with LI-COR gas analyzers, we are interested in measuring the total absorption of infrared light across a given waveband to determine absorber species concentration. The total absorption measured by the analyzer, A is in principle the result of integrating the absorption across the entire band as shown by

 $A = \int A'(v) dv$

(2)

where A'(v) is the absorption of infrared radiation at a given radiation frequency, and is given by Beer-Lambert's Law

 $A'(v) = 1 - \exp[-k(v)wl]$ (where w is the absorber concentration and l is the

optical path length (Burch and Williams 1964). These relationships form the basic principles behind

- Explains basis of broadening and effective pressure
- Derive dilution corrections
- How IRGAs work

https://app.boxenterprise.net/s/igs56gijkc4ftks30pci

Matching IRGAs

LI-6800 Normal operating mode:

Basic parameters computed

- Fluxes from mass balance
 - A Assimilation rate
 - E Transpiration rate
- Additional parameters
 - g_{sw} Stomatal conductance to water vapor
 - C_i Intercellular CO₂ concentration

Fick's First Law

$$J_j = -D_j \frac{\partial c_j}{\partial x} = g_j Dc_j$$

 J_i = flux D_j = diffusivity coefficient $\delta c_i / \delta x$ = change in concentration g_i = conductance

 Δc_i = concentration gradient

$$E \approx g_{total}^{H_2O}(W_i - W_a)$$
$$A \approx g_{total}^{CO_2}(C_a - C_i)$$

- Measure E & $w_a (w_a = W_s)$
- Measure leaf temperature
- Calculate w_i
- Solve for $g_{total}^{H_2O}$

- Measure A & $c_a (c_a = C_s)$
- $g^{CO2} = g^{H20}/1.6$
- Solve for c_i

1

Ohm's Law Analogy

$$r_{total} = r_{bl} + \underbrace{\begin{matrix} \hat{\mathcal{C}} & 1 \\ \hat{\mathcal{C}} & -1 \\ \hat{\mathcal{C}} &$$

Assumptions:

- end point of diffusion path is mesophyll surface
- cuticular resistance is near infinite

$$\mathcal{V}_{total} \gg \mathcal{V}_{bl} + \mathcal{V}_{s}$$

Boundary layer

I = leaf width

Biophysical Plant Physiology and Ecology, Park Nobel

Boundary layer conditions

near saturation

Boundary layer

Turbulent air

ambient

Boundary layer conditions

What does this mean for making measurements?

 For H2O: Target ambient boundary layer conditions!

RH (%) =
$$\frac{e_c}{e_{T_{air}}} * 100$$

$$e_c (kPa) = W_s P$$

$$VPD_{leaf}(kPa) = e(T_{leaf}) - e_c$$

On the LI-6800 use constant VPD (1 to 1.5 kPa)

What does this mean for interpreting the data?

 $E = Real count of H_2O$ 1 molecules leaving the 0.75 0.75 0.5 0.5 0.25 leaf Ey = 0.0053x + 0.7658 g_{s} $-W_a$) 0

What does this mean for interpreting the data?

- Water Use Efficiency
- Instantaneous versus Intrinsic

$$W_{t} = \frac{A}{E} = \frac{A}{g_{s} (w_{i} - w_{a})} = \frac{A}{g_{s} D_{a}} = W_{g} D_{a}$$
$$W_{g} = \frac{A}{g_{s}}$$

Seibt et al. 2008. Carbon isotopes and water use efficiency: sense and sensitivity. Oecologia

Measurements fall in two categories

- Response Curve imposed conditions
 - Light Response Curve
 - CO₂ Response Curve
- Survey
 - In situ picture under ambient conditions

When to make measurements?

A-C, and AQ curves

Response to [CO₂] Response to light

Parameters from AQ Response

 $r^2 = 0.9995$ = 34.28 ± 0.778 A_{sat} $= -1.492 \pm 0.117$ R_d A_{sat} – photosynthesis at saturating light 24 Photosynthetic Assimilation $(\mu mol_{CO_2} m^{-2}_{leaf area} s^{-1})$ R_d – Dark respiration rate 16 LCP - Light compensation point ϕ – Quantum yield 8 modeled A vs. α_{PAR} 95% Confidence Band measured A vs. α_{PAR} 0 ลี 0 500 1000 1500 2000 Absorbed Photosynthetically Active Radiation $(\alpha_{PAR}, \mu mol_{photons} m^{-2}_{leafarea} s^{-1})$

Parameters from Ac_i response

- V_{c,max} velocity of carboxylation
- J_{max} electron transport for RuBP regeneration
- c_i inflection transition from Vc,max to Jmax
- I stomatal limitation to photosynthesis
- g_m mesophyll conductance
- Γ* CO₂ compensation point
- TPU trios-phosphate utilization

Considerations for Ac_i measurements

- Saturating light
 - CO₂ effect on photosynthesis will be confounded with the effects of light
- Environmental Control
 - Reference vs. Sample
 - Humidity will alter stomatal aperture
 - Temperature control for enzyme kinetics
- Match at every point

Using short time steps is important

- Rubisco deactivation
- Stomatal closure

AC_i curve fitting tools

AC_i curve fitting tools

- Leafweb.ornl.gov
 - AC_i curve fitting and data sharing platform
 - Developed and hosted by Oak Ridge National Laboratory
- Plantecophys R package
 - Duursma RA. 2015. Plantecophys An R package for analysing and modeling leaf gas exchange data. PLoS ONE

Other chamber options for the LI-6800

Our discussion of g_s and c_i thus far has been based on assumptions that break down at the whole plant/canopy scale!

doug.lynch@licor.com

Selecting the right chamber?

- Chamber aperture bigger can be better!
- Light intensity control
- What data do you need?

LI-6800 Console flow path: Rapid & stable software control of CO2 and H20

Leaf photosynthesis and carbohydrate dynamics of soybeans grown throughout their life-cycle under Free-Air Carbon dioxide Enrichment

A. ROGERS^{1,4}, D. J. ALLEN^{2,3,*}, P. A. DAVEY^{1,2,†}, P. B. MORGAN², E. A. AINSWORTH¹, C. J. BERNACCHI^{2,3}, G. CORNIC⁵, O. DERMODY², F. G. DOHLEMAN¹, E. A. HEATON¹, J. MAHONEY⁴, X.-G. ZHU², E. H. DELUCIA², D. R. ORT^{1,2,3} & S. P. LONG^{1,2}

