This work is licensed under CC BY-NC-SA 4.0. To view a copy of this license, visit <u>http://creativecommons.org/licenses/by-nc-sa/4.0/</u>

EDDY COVARIANCE METHOD

DATA PROCESSING PRINCIPLES AND PROCEDURES

Gerardo Fratini

Principal Scientist, R&D LI-COR Environmental

FROM THIS

TO THIS

• Introduction to the Eddy Covariance data processing

• Eddy Covariance raw datasets

• Description of main processing steps

Several instruments from different manufacturers

Biosciences

In theory flux computation is simple

Fluxes are not measured, they are estimated!

• Fast, precise instruments measure high-frequency data of wind, gas concentration, temperature, ...

- Slow, accurate instruments measure low-frequency data of biomet variables
- Raw measurements and initial flux estimates need to be corrected for instrumental limitations, setup imperfections and less-than-ideal turbulence conditions
- Fluxes must be accompanied by quality flags and other means of quality evaluation

Sources of bad data that cannot be corrected

Preventable

- Measurements are not done inside the boundary layer of interest
- Terrain is not horizontal and uniform: advection
- Distortion of the air flow field

Not preventable

- Air flow is not fully turbulent (advection fluxes, storage)
- Turbulence is not stationary

EC ≈ Endless Correction

We "correct" for:

- Instrumental limitations:
 - Native gas measurement is density (not concentration)
 - Finite time response
 - Finite measuring volume and presence of sampling line
 - o Instrumental drifts
 - Transducers' shadowing
 - Technology-specific quirks (LASER, NDIR...)
 - Short-term malfunctions, power-downs
- Deployment limitation:
 - o Measurement height
 - o Leveling of the instruments
 - Lack of instruments' co-location

Raw Eddy Covariance datasets – Fast EC data

• High frequency (1-20 Hz) data of 3D wind speed, gas concentrations,

temperature, pressure, diagnostics...

Raw Eddy Covariance datasets – Fast EC data

Timestamp, often not used but worth storing

Raw Eddy Covariance datasets – Slow biomet data

• Low frequency (<1 Hz) data of ambient T, P, RH, radiations, precipitation, ...

Raw Eddy Covariance datasets – Metadata

- Site location, instrument models and their actual deployment (height
 - above aground, separations, acquisition frequency..)

Eddy Covariance Software

- EddyPro® TK₃
- EdiRe
 EddyUH
 EasyFlux® DL/PC

eddy4R

eddyfro

Released and maintained by LI-COR[®]

• 7000+ Users

- 1000+ peer-reviewed citations
- Used by and developed with ICOS, AmeriFlux

Data processing workflow

- A parenthesis on fluxes on-the-fly
- Sometimes the EC logging system allows for on-the-fly flux computation, on a 30-min basis
- Good for checking status of acquisition
- Without a complete use of metadata, on-the-fly fluxes are likely to be not accurate
- In some conditions, on-the-fly fluxes cannot be accurate (e.g. closed path systems with long sampling lines, complex topographies)
- In any case, storing raw data is <u>essential</u> for future reprocessing or re-evaluation of calculated fluxes

First step

Quality screening of high frequency time series and removal of implausible values

Detecting anomalies in raw time series (e.g., Vickers and Mahrt, 1997)

- Attempt to detect different problems in the time series
- Provide good/bad flags for each test, for each time series, for each raw file
- Can be used to clean up raw time series
- Complement micrometeorological flags for QA/QC of fluxes

Spike test

Drop-outs

Amplitude resolution

Discontinuities

Other 5 statistical tests

- Variables shall not get physically implausible values
- Skewness and Kurtosis shall not deviate too much from normal distribution
- Angle of attack shall not be very large for too many samples
- Time delays shall be close enough to expectations
- Time series shall not be instationary

Second step

Correction of time series for instrumental and setup limitations

Angle-of-attack correction

• Corrects for the flow distortion induced by the anemometer (shadowing)

- Available only for vertical-mounting Gill anemometers (R₃, WindMaster)
- If not applied, <u>all</u> fluxes are underestimated by some 10-15%!

Kochendorfer et al., 2011

Axis rotations for tilt correction

- Correct anemometer misalignment with respect to local flow streamlines
- If not applied, all fluxes are likely to be strongly overestimated
- Different correction approaches:
 - Double rotations, triple rotations

Axis rotations for tilt correction – Double rotation

Assumes that average vertical wind component is zero on a 30-min

basis (no vertical advection fluxes)

Step 1: Nullify v component of average wind vector

$$\begin{cases} u_1 = u_m \cos \gamma + v_m \sin \gamma \\ v_1 = -u_m \sin \gamma + v_m \cos \gamma \\ w_1 = w_m \end{cases} \qquad \gamma = \tan^{-1} \left(\frac{v_n}{u_n} \right)$$

Step 2: Nullify *w* component of average wind vector

$$\begin{cases} u_2 = u_1 \cos \alpha + w_1 \sin \alpha \\ v_2 = v_1 (=0) \\ w_2 = -u_1 \sin \alpha + w_1 \cos \alpha \end{cases} \quad \alpha = \tan^{-1} \left(\frac{w_1}{u_1} \right)$$

Axis rotations for tilt correction – Sector-wise planar fit

- Assumes that average vertical wind component is zero on the long term (weeks), not on a 30-min basis
- Requires pre-processing raw data to assess rotation matrices

Griessbaum and Schmidt, 2009

- Time delay compensation
- Time delays (lags) arise due to the air sampling systems, signal phase-shift, instruments separation
- If not compensated, lead to systematic flux underestimation
- The covariance maximization procedure is used to calculate time lags
 - automatically.

Covariance maximization

• We impose a range of (plausible) artificial lags between to the time series of w and gas concentration, and determine the time lag that maximizes the covariance

The special case of water vapor in closed-path systems

• Being a sticky gas, H2O travelling time in the sampling line depends on

RH (and secondarily on T).

Covariance maximization must be adapted to account for such

dependency.

Runkle et al. (2012, BLM)

Nordbo et al. (2012, Tellus B)

Time lag optimizer

• A pre-processing step for an in-situ assessment of the dependency of

Detrending

Calculation of turbulent fluctuations (elimination of non turbulent

trends)
$$H = \rho c_p \overline{w'T'} \qquad T' = T - \overline{T}$$

Detrending

Calculation of turbulent fluctuations (elimination of non turbulent

Time (samples every 0.1 s)

Detrending

• Long-term (30-min) motions are to be expected, or should they be interpreted as non-turbulent trends?

CORRECTION OF TIME SERIES

- Open-path and closed-path instruments without adequate protection against pollutants are subject to contamination
- If the optical path is obstructed by pollutants, concentration measurement can be affected (usually shows up as a drift in time)

port

CORRECTION OF TIME SERIES

Instrumental drift

- For dynamics with clear patterns and "reference values" (e.g. atmospheric CO₂), drifts can easily be recognized. For H2O it's much less obvious.
- Effects of contamination depends on pollutants size, effective refractive index, etc.
- RSSI (Signal Strength) is a proxy, but not always a reliable one.

Fratini, internal LI-COR report

Instrumental drift

• It is commonly believed that errors in mean concentrations do not bias resulting fluxes.

• After all:
$$F = \overline{\rho_a} \cdot \overline{w'c'}$$

• In reality, on account of the non-linearity of calibration curves, this is not true:

Fratini et al. 2014, Biogeosciences

CORRECTION OF TIME SERIES

Instrumental drift

- Flux error depends directly on concentration bias
- For water vapor, flux error depends strongly also on the concentration at which the bias occurs

Fratini et al. 2014, Biogeosciences

CORRECTION OF TIME SERIES

Instrumental drift

- A procedure is available in EddyPro[®] to correct concentration biases
- LE fluxes can improve as much as 8%

Fratini et al. 2014, Biogeosciences

Third step

Correction of preliminary flux estimates

$$c = d \frac{RT}{P(1 - \chi_w)} = \frac{d}{d_a}$$

- Compensate for the dependency of gas molar density measurements on fluctuations of air temperature, pressure and humidity
- This is not a correction: it is an actual term in the mass balance equation

 $d = c \frac{P(1 - \chi_w)}{RT} \qquad \begin{array}{c} w' \\ T' \\ d' \end{array}$

 $w' \cdot d' < 0$

Apparent CO₂ uptake!

$$d = c \frac{P(1 - \chi_w)}{RT} \qquad \begin{array}{c} w' \uparrow \\ T' \uparrow \\ d' \end{array}$$

$$w' \cdot d' < 0$$

Apparent CO₂ uptake!

- Must be applied for all gas analyzers that measure gas molar densities
- Several approaches available:
 - Transform densities to mixing ratios at high frequency
 - enclosed-path analyzers with fast T and P measurements
 - Neglect T and P fluctuations, compensate for humidity
 - Closed-path analyzers with long sampling lines
 - WPL approach to add T, P and humidity terms to preliminary fluxes
 - Open-path analyzers

- Compensation of spectral attenuations
- Spectra attenuations arise due to:
 - Instrumental limitations (response time, volume averaging)
 - Instruments deployment (sampling lines, instrument separations, height above the ground)
 - Site characteristics (surface roughness)
 - Processing choices (finite flux averaging interval)

Compensation of spectral attenuations

- Strategies for spectral attenuations
- Analytic (Moncrieff et al. (1997); Massman (2000)):
 - <u>PROS</u>: Simple, robust, physically based
 - <u>CONS</u>: some important sources of attenuation are not described (filters, water vapor interactions with surfaces..)

- In-situ (Ibrom et al. (2007); Runkle et al. (2012), Fratini et al. (2012)):
 - <u>PROS</u>: don't make (too many) assumptions on attenuation sources, assess attenuations based on collected data

Other corrections (instrument-specific)

- Correction of sensible heat fluxes for effects of humidity on air temperature estimated with sonic temperature
- Cross-wind correction of sonic temperature (often included in anemometer firmware)
- «Self-heating correction» for some open-path CO₂/H₂O analyzer models in cold environments
- Spectroscopic correction for LASER-based analyzers (e.g. LI-7700)
- Band-broadening correction for NDIR-based analyzers

Micrometeorological QC tests: stationarity

✓ Foken et al. 2004, Handbook of Micrometeorology

$$(\overline{x'w'})_{i} = \frac{1}{N-1} \left[\sum_{j} x_{j}w_{j} - \frac{1}{N} \sum_{j} x_{j} \sum_{j} w_{j} \right] \qquad \text{Covariance calculated on single sub-period } i$$

$$\overline{x'w'} = \frac{1}{M} \sum_{i} (\overline{x'w'})_{i} \qquad \text{Average covariance calculated usign the } M \text{ sub-periods}$$

$$(\overline{x'w'})_{o} = \frac{1}{M(N-1)} \left[\sum_{i} (\sum_{j} x_{j}w_{j})_{i} - \frac{1}{MN} \sum_{i} (\sum_{j} x_{j} \sum_{j} w_{j})_{i} \right] \qquad \text{Covariance calculated on the full averaging period}$$

$$\text{RN}_{\text{cov}} = \left| \frac{(\overline{x'w'}) - (\overline{x'w'})_{o}}{(\overline{x'w'})_{o}} \right| \qquad \text{Relative difference between the two covariance estimates, should not exceed a threshold (30\% \text{ or } 100\%)}$$

Micromet. QC tests : developed turbulence

Foken et al. 2004, Handbook of Micrometeorology

$$\frac{\sigma_{u,v,w}}{u_*} = c_1 \left(\frac{z}{L}\right)^{c_2}$$

$$\frac{\sigma_x}{X_*} = c_1 \left(\frac{z}{L}\right)^{c_2}$$

In atmospheric turbulence the ratio between variance of a quantity and its turbulent flux is constant or function of the stability parameter

Parameter	z/L	C1	C_2
σ_w/u_*	0 > z/L > -0.032	1.3	0
	-0.032 > z/L	2.0	1/8
σ_u/u_*	0 > z/L > -0.032	2.7	U
A	-0.032 > z/L	4.15	1/8
σ_I / T_*	0.02 < z/L < 1	1.4	-1/4
100	0.02 > z/L > -0.062	0.5	-1/2
	-0.062 > z/L > -1	1.0	-1/4
	-1 > z/L	1.0	-1/3

 Relative difference between the two estimates of turbulence parameters must be below a given thrensold

$$\text{ITC}_{\sigma} = \left| \frac{(\sigma_x / X_*)_{\text{model}} - (\sigma_x / X_*)_{\text{measurement}}}{(\sigma_x / X_*)_{\text{model}}} \right|$$

Micrometeorological QC tests combination

- Stationarity and developed turbulence tests provide an individual "flag" (one per test)
- The two flags are combined in a single general flag that can be used to filter the data

a		b		
class	range	class	range	
1	0-15%	1	0-15%	
2	16-30%	2	16-30%	
3	31-50%	3	31-50%	
4	51-75%	4	51-75%	
5	76-100%	5	76-100%	
6	101-250%	6	101-250%	
7	251-500%	7	251-500%	
8	501-1000%	8	501-1000%	
9	>1000%	9	>1000%	

a: State-state test according to Equation 9.6.

b: Integral turbulence characteristics according to Equation 9.9.

Foken et al. 2004, Handbook of Micromet

How does EddyPro use biomet data?

• Fluxes (e.g. over 30 min intervals) are calculated and corrected based on:

• <u>Covariances</u> calculated from fast measurement, acquired at f > 5Hz

Mean quantities, averaged over the 30 min interval

For example, CO₂ flux:

How does EddyPro use biomet data?

• Average **air temperature** and **RH** are involved in various flux equations, for example:

air density:
$$\rho_d = \frac{P}{R_d T_a} - \frac{\rho_w}{m_w} \frac{m_d}{m_w}$$

WPL term:
$$F = F_o + \mu \frac{E}{\rho_d} \frac{\rho_c}{1 + \mu \frac{\rho_w}{\rho_d}} + \frac{H}{\rho_a C_p} \frac{\rho_c}{T_a} + P_{term}$$

H correction:
$$H = \rho C_p \overline{w' T_a'} + \rho C_p \frac{-0.5 \, 1 \overline{T_a} E}{\rho_a}$$

How does EddyPro use biomet data?

• Global (R_g) and longwave incoming (R_l) radiations and PAR are needed in the off-season uptake correction of the LI-7500(A), Burba et al. 2008:

	Parameters for multiple regression [*] between T_s - T_a and T_a , R_g , R_l , U					
	Offset	Parameter 1 (for T_a)	Parameter 2 (for R_g)	Parameter 3 (for R_1)	Parameter 4 (for U)	
Daytime						
$T_{\rm s}^{\rm bot} - T_{\rm a}$	2.8	-0.0681	0.0021	-	-0.334	
$T_{\rm s}^{\rm top}-T_{\rm a}$	-0.1	-0.0044	0.0011	_	-0.022	
$T_{\rm s}^{\rm spar} - T_{\rm a}$	0.3	-0.0007	0.0006	_	-0.044	
Night-time						
$T_{\rm s}^{\rm bot} - T_{\rm a}$	0.5	-0.1160	19 <u>111</u>	0.0087	-0.206	
$T_{\rm s}^{\rm top} - T_{\rm a}$	-1.7	-0.0160		0.0051	-0.029	
$T_{\rm s}^{\rm spar} - T_{\rm a}$	-2.1	-0.0200	1. 	0.0070	0.026	

*Multiple regression: daytime $T_s - T_a = \text{offset} + \text{parameter } 1 \times T_a + \text{parameter } 2 \times R_g + \text{parameter } 4 \times U$; night-time $T_s - T_a = \text{offset} + \text{parameter } 1 \times T_a + \text{parameter } 3 \times R_l + \text{parameter } 4 \times U$. All temperatures are in °C.

