VARIABLES FOR THE INITIAL NEW FLUXNET SYSTEM

Variables with An (e.g. A1) are alternatives, meaning that at least one of them is mandatory

* = To be submitted ONLY if calculated using a profile

Code	Units	Description	Mand	Strongly	Possible
		•	atory	Suggested	
imekeeping variables					
TIMESTAMP END		ISO timestamp end of averaging period - short format (12-	x		
		digit integer)	<u>^</u>		
TIMESTAMP START		ISO timestamp start of averaging period - short format (12-	x		
		digit integer)	~		
Gases and Fluxes varie	ables				
CH4	nmolCH4 mol-1	Methane (CH4) mole fraction in wet air			Х
CH4_MIXING_RATIO	nmolCH4 mol-1	Methane (CH4) in mole fraction of dry air			Х
СО	nmolCO mol-1	Carbon Monoxide (CO) mole fraction in wet air			Х
CO2	µmolCO2 mol-1	Carbon Dioxide (CO2) mole fraction in wet air	A5		
CO2_MIXING_RATIO	µmolCO2 mol-1	Carbon Dioxide (CO2) in mole fraction of dry air	A5		
	µmolCO2 mol-1	Standard deviation of carbon dioxide mole fraction in wet			x
		air			
CO2C13	‰ (permil)	Stable isotopic composition of CO2 - C13 (i.e., d13C of CO2)			х
FC	µmolCO2 m-2 s-1	Carbon Dioxide (CO2) turbulent flux (no storage correction)	х		
FCH4	nmolCH4 m-2 s-1	Methane (CH4) turbulent flux (no storage correction)			Х
FN2O	nmolN2O m-2 s-1	Nitrous oxide (N2O) turbulent flux (no storage correction)			х
FNO	nmolNO m-2 s-1	Nitric oxide (NO) turbulent flux (no storage correction)			Х
	nmolNO2 m-2 s-1	Nitrogen dioxide (NO2) turbulent flux (no storage			v
		correction)		^	
FO3	nmolO3 m-2 s-1	Ozone (O3) turbulent flux (no storage correction)			Х
H2O	mmolH2O mol-1	Water (H2O) vapor in mole fraction of wet air		X	
H2O_MIXING_RATIO	mmolH2O mol-1	Water (H2O) vapor in mole fraction of dry air		X	
H2O_SIGMA	mmolH2O mol-1	Standard deviation of water vapor mole fraction			Х
N20	nmolN20 mol-1	Nitrous Oxide (N2O) mole fraction in wet air			Х

N2O_MIXING_RATIO	nmolN20 mol-1	Nitrous Oxide (N2O) in mole fraction of dry air			Х
NO	nmolNO mol-1	Nitric oxide (NO) mole fraction in wet air			Х
NO2	nmolNO2 mol-1	Nitrogen dioxide (NO2) mole fraction in wet air			Х
03	nmolO3 mol-1	Ozone (O3) mole fraction in wet air			Х
SC	µmolCO2 m-2 s-1	Carbon Dioxide (CO2) storage flux	A5*		
SCH4	nmolCH4 m-2 s-1	Methane (CH4) storage flux			Х
SN2O	nmolN20 m-2 s-1	Nitrous oxide (N2O) storage flux			Х
SNO	nmolNO m-2 s-1	Nitric oxide (NO) storage flux			Х
SNO2	nmolNO2 m-2 s-1	Nitrogen dioxide (NO2) storage flux			Х
SO2	nmolSO2 mol-1	Sulfur Dioxide (SO2) mole fraction in wet air			Х
SO3	nmolO3 m-2 s-1	Ozone (O3) storage flux			Х
Heat Fluxes variables					
G	W m-2	Soil heat flux		X	
Н	W m-2	Sensible heat turbulent flux (no storage correction)	Х		
LE	W m-2	Latent heat turbulent flux (no storage correction)	Х		
SB	W m-2	Heat storage flux in biomass			Х
sc	W m-2	Heat storage flux in the soil above the soil heat fluxes			x
50		measurement			^
SH	W m-2	Sensible heat (H) storage flux		X*	
SLE	W m-2	Latent heat (LE) storage flux		X*	
Quality Check Flags					
		Results of the quality flagging for FC according to Foken et			
	nondimonsional	al 2004, based on a combination of Steady State and		V V	
	Inonuimensionai	Integral Turbulence Characteristics tests by Foken and		^	
		Wichura (1996) (i.e., 0, 1, 2)			
		Results of the quality flagging for FCH4 according to Foken			
	nondimonsional	et al 2004, based on a combination of Steady State and			v
		Integral Turbulence Characteristics tests by Foken and			^
		Wichura (1996) (i.e., 0, 1, 2)			
		Results of the quality flagging for FN2O according to Foken			
	nondimensional	et al 2004, based on a combination of Steady State and			
		Integral Turbulence Characteristics tests by Foken and			
		Wichura (1996) (i.e., 0, 1, 2)			

FNO_SSITC_TEST		Results of the quality flagging for FNO according to Foken et			
	nondimonsional	al 2004, based on a combination of Steady State and			v
	nonumensional	Integral Turbulence Characteristics tests by Foken and			^
		Wichura (1996) (i.e., 0, 1, 2)			
		Results of the quality flagging for FNO2 according to Foken			
	nondimensional	et al 2004, based on a combination of Steady State and			х
		Integral Turbulence Characteristics tests by Foken and			
		Wichura (1996) (i.e., 0, 1, 2)			
		Results of the quality flagging for FO3 according to Foken et			
	nondimonsional	al 2004, based on a combination of Steady State and			v
	nonumensional	Integral Turbulence Characteristics tests by Foken and			^
		Wichura (1996) (i.e., 0, 1, 2)			
		Results of the quality flagging for H according to Foken et al			
	nondimonsional	2004, based on a combination of Steady State and Integral		x	
	nonumensional	Turbulence Characteristics tests by Foken and Wichura			
		(1996) (i.e., 0, 1, 2)			
		Results of the quality flagging for LE according to Foken et		x	
	nondimonsional	al 2004, based on a combination of Steady State and			
	nonumensional	Integral Turbulence Characteristics tests by Foken and			
		Wichura (1996) (i.e., 0, 1, 2)			
		Results of the quality flagging for TAU according to Foken et			
	nondimonsional	al 2004, based on a combination of Steady State and			
	nonumensional	Integral Turbulence Characteristics tests by Foken and		^	
		Wichura (1996) (i.e., 0, 1, 2)			
Footprint variables					
	m	Distance at which cross-wind integrated footprint		v	
	111	cumulative probability is 70%		^	
	m	Distance at which cross-wind integrated footprint		v	
	111	cumulative probability is 80%		X	
FETCH_90	m	Distance at which cross-wind integrated footprint		х	
		cumulative probability is 90%			
		Footprint quality flag (i.e., 0, 1): 0 and 1 indicate data		x	
FETCH_FILTER	nondimensional	measured when wind coming from direction that should be			
		discarded and kept, respectively			

FETCH_MAX		Distance at which cross-wind integrated footprint		v	
	111	contribution is maximum		^	
Atmospheric Meteo	prological variables				
PA	kPa	Atmospheric pressure		Х	
PBLH	m	Planetary boundary layer height			Х
RH	%	Relative humidity, range 0-100	A1		
T_SONIC	deg C	Sonic temperature		Х	
T_SONIC_SIGMA	deg C	Standard deviation of sonic temperature			Х
ТА	deg C	Air temperature	Х		
VPD	hPa	Vapor Pressure Deficit	A1		
Precipitation Meteo	orological variables				
D_SNOW	cm	Snow depth		Х	
Р	mm	Precipitation		Х	
P_RAIN	mm	Rainfall		Х	
P_SNOW	mm	Snowfall			Х
RUNOFF	mm	Run off			Х
STEMFLOW	mm	Excess precipitation that drains from outlying branches and leaves and is channeled through the stems to the ground			x
THROUGHFALL	mm	Excess precipitation that passes directly through a canopy or drips from wet leaves to the ground			х
TSN	deg C	Snow temperature			Х
Radiation Meteoro	logical variables				
ALB	%	Albedo, range 0-100			Х
APAR	µmolPhoton m-2 s-	1Absorbed PAR			Х
EVI	nondimensional	Enhanced Vegetation Index			Х
FAPAR	%	Fraction of absorbed PAR, range 0-100			Х
FIPAR	%	Fraction of intercepted PAR, range 0-100			Х
LW_BC_IN	W m-2	Longwave radiation, below canopy incoming			Х
LW_BC_OUT	W m-2	Longwave radiation, below canopy outgoing			Х
LW_IN	W m-2	Longwave radiation, incoming		X	
LW_OUT	W m-2	Longwave radiation, outgoing		Х	
MCRI	nondimensional	Carotenoid Reflectance Index (Gitelson et al., 2002)			X

МТСІ	nondimensional	Meris Terrestrial Chlorophyll Index (Dash and Curran, 2004)			x
NDVI	nondimensional	Normalized Difference Vegetation Index			Х
NETRAD	W m-2	Net radiation		X	
NIRV	W m-2 sr-1 nm-1	Near Infrared Vegetation Index (Badgley et al., 2017)			Х
PPFD_BC_IN	µmolPhoton m-2 s-:	Photosynthetic photon flux density, below canopy incoming	L	x	
PPFD_BC_OUT	μmolPhoton m-2 s-2	Photosynthetic photon flux density, below canopy outgoing	l	x	
PPFD_DIF	µmolPhoton m-2 s-:	Photosynthetic photon flux density, diffuse incoming		Х	
PPFD_DIR	µmolPhoton m-2 s-2	Photosynthetic photon flux density, direct incoming		Х	
PPFD_IN	µmolPhoton m-2 s-:	Photosynthetic photon flux density, incoming	A2		
PPFD_OUT	µmolPhoton m-2 s-:	Photosynthetic photon flux density, outgoing		Х	
PRI	nondimensional	Photochemical Reflectance Index			Х
R_UVA	W m-2	UVA radiation, incoming			Х
R_UVB	W m-2	UVB radiation, incoming			Х
REDCI	nondimensional	Red Edge Chlorophyll Index			Х
REP	nm	Red Edge Position (Dash and Curran, 2004)			Х
SPEC_NIR_IN	W m-2 nm-1	Radiation (near infra-red band), incoming			Х
SPEC_NIR_OUT	W m-2 sr-1 nm-1	Radiation (near infra-red band), outgoing			Х
SPEC_NIR_REFL	nondimensional	Reflectance (near infra-red band)			Х
SPEC_PRI_REF_IN	W m-2 nm-1	Radiation for PRI reference band (e.g., 570 nm), incoming			x
SPEC_PRI_REF_OUT	W m-2 sr-1 nm-1	Radiation for PRI reference band (e.g., 570 nm), outgoing			х
SPEC_PRI_REF_REFL	nondimensional	Reflectance for PRI reference band (e.g., 570 nm)			Х
SPEC_PRI_TGT_IN	W m-2 nm-1	Radiation for PRI target band (e.g., 531 nm), incoming			Х
SPEC_PRI_TGT_OUT	W m-2 sr-1 nm-1	Radiation for PRI target band (e.g., 531 nm), outgoing			Х
SPEC_PRI_TGT_REFL	nondimensional	Reflectance for PRI target band (e.g., 531 nm)			Х
SPEC_RED_IN	W m-2 nm-1	Radiation (red band), incoming			Х
SPEC_RED_OUT	W m-2 sr-1 nm-1	Radiation (red band), outgoing			Х
SPEC_RED_REFL	nondimensional	Reflectance (red band)			Х
SR	nondimensional	Simple Ratio			Х
SW_BC_IN	W m-2	Shortwave radiation, below canopy incoming			X

SW_BC_OUT	W m-2	Shortwave radiation, below canopy outgoing			X
SW_DIF	W m-2	Shortwave radiation, diffuse incoming		Х	
SW_DIR	W m-2	Shortwave radiation, direct incoming		Х	
SW_IN	W m-2	Shortwave radiation, incoming	A2		
SW_OUT	W m-2	Shortwave radiation, outgoing		Х	
TCARI	nondimensional	Transformed Chlorophyll Absorption in Reflectance Index			х
Soil Meteorologica	al variables		<u> </u>		
SWC	%	Soil water content (volumetric), range 0-100		Х	
SWP	kPa	Soil water potential			Х
TS	deg C	Soil temperature		Х	
WTD	m	Water table depth		Х	
Water bodies Met	eorological variables				
TW	deg C	Water temperature		Х	
PPFD_UW_IN	µmolPhotons m-2 s	Photosynthetic photon flux density, underwater, incoming		х	
COND WATER	μS cm-1	Conductivity (i.e., electrical conductivity) of water		Х	
PCO2	µmolCO2 mol-1	Dissolved carbon dioxide (CO2) in water		Х	
PCH4	nmolCH4 mol-1	Dissolved methane (CH4) in water			Х
PN2O	nmolN20 mol-1	Dissolved nitrous oxide (N2O) in water			Х
DO	µmol L-1	Dissolved oxygen in water			Х
Wind related Mete	eorological and Fluxes ve	ariables			
MO_LENGTH	m	Monin-Obukhov length		Х	
TAU	kg m-1 s-2	Momentum flux	A3		
	m c 1	Standard deviation of velocity fluctuations (towards main-			v
	111 5-1	wind direction after coordinates rotation)			X
USTAR	m s-1	Friction velocity	A3		
V_SIGMA	m c 1	Standard deviation of lateral velocity fluctuations (cross		v	
	111 5-1	main-wind direction after coordinates rotation)		^	
W_SIGMA	m s-1	Standard deviation of vertical velocity fluctuations		Х	
WD	Decimal degrees	Wind direction		Х	
WS	m s-1	Wind speed		Х	
WS_MAX	m s-1	maximum WS in the averaging period			Х
ZL	nondimensional	Monin-Obukhov Stability parameter		x	

Biological continuous variables						
DBH	cm	Diameter of tree measured at breast height (1.3m) with continuous dendrometers			х	
LEAF_WET	%	Leaf wetness, range 0-100			Х	
SAP_DT	deg C	Difference of probes temperature for sapflow measurements			х	
SAP_FLOW	mmolH2O m-2 s-1	Sap flow			Х	
T_BOLE	deg C	Bole temperature			Х	
T_CANOPY	deg C	Temperature of the canopy and Vor surface underneath the sensor			х	