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Variability in the growth rate of atmospheric CO,

GR:5, = emissions (fossil fuels, land use change,
cement production)
- Terrestrial CO, sinks

Atmospheric C0
Global Carbon Cycle ~ "I7mPie 2
+4.3 Net Change/year
- Oceanic CO, sinks

S

-

» :
&

=S

o

c

)

Q.

wn
<

Incident Laser Pulse

9.8 Flux/year

120

<
§
£
§
I3
)
A
wn
~

;5)
<
g
>
L
Q
£
a
”n
~N

2.6 Net Flux/year+

Ocean *39000

. : ;‘ \ "“:‘.' i ‘»""f“ ,,:3.»: -, B
‘,'.>\'\ .jf}t w‘i L .“_-‘ : "n' :
| - \- L e ‘r' 2 ¥ : ,r
R [ Loy § > 2RI
‘ ‘ ﬂ" l”ﬂ .
*Stock= Billion MetricTons - .
Flux= Billion Metri®Tons PerYear Soils~*1500-2400 (< 2m) .




The growth rate of atmospheric CO,

45 _002 growth rate
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Data source: Scripps CO, program @ Mauna Loa




Land variability dominates the growth rate

Ocean Sink Anomalies
i Land Sink Anomalies
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Data source: Global Carbon Project




Linking the growth rate to the land

Weile Wang
et al. (2013)
PNAS
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Temperature (°C)

Ahlstrom et al.
(2015); Poulter
et al. (2015)
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Variation in the growth rate tightly
coupled to tropical temperatures.

Seml-arld reglons aISO play an 1985 1990 1995 2000 2005 2010
important role. Time (yr)

GCP land flux TRENDY mean NBP
— /- 0.8 PgC = {st and 3rd quartiles
(including fLUC) (excluding fLUC)

=== | PJ-GUESS NBP (including fLUC)




Global scale model performance — good enough?

R =0.52 R =0.7
P <0.001 P <0.001
RMSE =1.01

P <0.001
RMSE =1.04 o .o.

R =0.71
P <0.001
RMSE =0.82
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RMSE =0.96

Keenan et al. (2016)
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Global Carbon Project annual NEP (PgCy ')




A question of scale...

FLUXCOM

2000 2010 1980 1990 2000

Jung et al. (2017)
Nature
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A question of scale...

FLUXCOM TRENDY

NEE IAV (normalized) @

R2=0R?=089R2=0141 [ . RP=0R?=0.84R2=0.19]
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at the site scale...

:Global Change Biology

Global Change Biology (2012) 18, 1971-1987, doi: 10.1111/j.1365-2486.2012.02678.x Ke enan et

al. (2012)

Terrestrial biosphere model performance for inter-annual
variability of land-atmosphere CO, exchange

« At the site level, models perform terribly

16 models and 3 satellite products, 11 forested sites

« None of the models fell within measurement uncertainty
« Systematic errors, common to all included models:

« Underrepresentation of variability in soil thaw, snowpack
melting, and canopy phenology

 Difficulties in reproducing the lagged response to extreme
climatic events




Biophysical Control

Niu et al.
(in review)

Radiation
Temperature Biogeochemical

/\/\/\/\ \ Processes:
E.g., phenology,

Physiology,

Vegetation change,

Precipitation Nitrogen regulation,
disturbance

Others

NNV

Shao et al. 2015 AFM: 50/50 share between direct and indirect effects.




Direct and indirect pathways of influence

Concurrent impacts Lagged impacts

, Plant physiology, 2
F:H: D P+ Changes inplant phenol
photosynthesis & respiration - o F ra n k et
Faps snow & ice breakage (trees) Changes incarbon allocation patterns oY al : (2 O 1 5)
S mechanical damage (wind throw, lodging) and tissue chemical traits
F' H: D P S Reduced plant growth & increased mortality H?\M:M .

year(s) after
Srought
19

Directimpacts

Changes in plant species composition

Changes in stress resistance FHD»

F H D P+ | Change in microbial community structure and activity

Pest & pathogen outbreaks
facilitated e.g. by less frequent cold extremes reduced
pathogen mortality, by drought-induced changesinC
allocation patterns , wind throw caused deadwood
accumulation
-> reduced plant growth & increased mortality

Indirect impacts

Soil erosion -> loss of soil carbon
e.g. facilitated by sparse vegetation cover following
drought, fire and/or land use

changes in soil microbial communities, litter quality

peatland - carbon decomposition
e.g. drought/reduced water table induced

cimate Ffrost Hheat Ddrought Pheavy S heavy organic matter decomposition
pxtreme  extreme  extreme precipitation storms oo e onces are indicated by numbers in legend




Concurrent impacts

Lagged impacts




Concurrent impacts

State
Changes

Changes in phenology from warming

Changes in canopy structure from ice-
storms/wind-throw

Forest mortality due to drought
Defoliation events (insect/wind/frost)

Leaf/canopy temperature

Trait

Changes

Acclimation

Rate
Changes

Response of photosynthesis and
respiration to environmental drivers

Lagged impacts




Concurrent impacts

State
Changes

Changes in phenology from warming

Changes in canopy structure from ice-
storms/wind-throw

Forest mortality due to drought
Defoliation events (insect/wind/frost)
Leaf/canopy temperature

Trait
Changes

Acclimation

Rate
Changes

Response of photosynthesis and
respiration to environmental drivers

Lagged impacts

State
Changes

Canopy development
Regrowth from disturbance
Litter layer dynamics

Non-structural carbohydrate pool
dynamics

Hydrology

Trait
Changes

Acclimation

Rate
Changes

All of the above!




Concurrent impacts

State
Changes

Changes in phenology from warming

Changes in canopy structure from ice-
storms/wind-throw

Forest mortality due to drought
Defoliation events (insect/wind/frost)
Leaf/canopy temperature

Trait
Changes

Acclimation

Rate
Changes

Response of photosynthesis and
respiration to environmental drivers

Lagged impacts

State
Changes

Canopy development
Regrowth from disturbance
Litter layer dynamics

Non-structural carbohydrate pool
dynamics

Hydrology

Trait
Changes

Acclimation

Rate
Changes

All of the above!

Expected response depends on the duration, intensity and co-variation of
anomalous forcings.




Way forward?

Better data
with well characterized uncertainties
Different data
BADM, remote sensing observations
More sites
working on it!
Longer datasets
F17 now has 10’s of sites with >7 years
Better techniques
Model-data integration
Data mining/Machine learning (incl. deep learning)
Causal inference approaches (e.g., Granger)




Model-data integration

Seasonal dynamics and age of stemwood nonstructural New

carbohydrates in temperate forest trees Phytologist
(2013)

Andrew D. Richardson’, Mariah S. Carbone?, Trevor F. Keenan', Claudia I. Czimczik?, David Y. Hollinger4,
Paula Murakami’, Paul G. SchabergS and Xiaomei Xu®

A Woody biomass
increment
Tower C uptake
(r=0.06, ns)
® |agged tower 49
(f= 0.80, P< 001) Lagged tower

C sequestration (g C m=2yr1)
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Machine Learning

Climate controls over ecosystem metabolism: insights from a
fifteen-year inductive artificial neural network synthesis for a

Oecologia
(2017)

subalpine forest

Loren P. Albert! - Trevor F. Keenan? - Sean P. Burns>* - Travis E. Huxman®
Russell K. Monson!®
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1. Our understanding and ability to reproduce interannual variability
Is limited

Models have lots of room for improvement, but not known why
Lagged effects are important

More data than ever before

Better data than ever before

Wider array of quantitative techniques

N o a & W DN

We can do it!
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