

FLUXNET 2017 Workshop Berkeley, June 2017

FLUXCOM – from FLUXNET to a global flux picture

Markus Reichstein, Martin Jung & FLUXCOM team

Scaling from flux-towers to globe

Empirical upscaling methodology

Representativeness in climate space

After 1st promising results: global effort

D. Papale

M. Reichstein

M. Jung

K. Ichii

G. Camps-Valls

G. Tramontana

FluxCom

C. Schwalm

T. Keenan

T. Hilton

1st idea: RECCAP ws, Tuscia N. Carvalhais

A. Bloom

Consolidation: Berkeley 2012 ws

Cross-validation (leave-one-site-out)

Tramontana et al. (2016), BG

FluxCem

Data-driven view on dynamic Biosphere-Atmosphere Exchange

Evapotranspiration [MJ m⁻² day⁻¹]

Soil water availability [index]

Data: Jung et al. (2011). Animations: F. Gans, MPI-BGC

Primary production (GPP) [g m⁻² day⁻¹]

Sensible heat flux [MJ m⁻² day⁻¹]

How to evaluate? How to analyse?

Different answers for carbon fluxes and energy fluxes

Seasonal cycle of NEE against inversion and model

"NEE" (fire subtracted)

Comparison with sun induced fluorescence

seasonal cycle (2009-2010)

FLUXCOM and atmospheric inversion-based

NEE variability correlate well

...as good as state-of-the-art ensemble of vegetation models ("Trendy") [but magnitude does not match well!]

Jung et al. (2017), Nature

Global signal related to temperature, local signal to water

Temperature driven Water driven Radiation driven Total signal

Monthly-latitudinal sensitivities: water effects

on GPP and TER compensate

Based on: $\delta Flux = a_{Temp} * \delta Temp + a_{WAI} * \delta WAI + a_{RAD} * \delta Rad$, for each month

Evaluation of upscaled Rn

Half-hourly data-driven flux estimates

GPP [μ mol m⁻² s⁻¹]

Bodesheim, Jung, Mahecha et al.

FLUXNET workshop, Berkeley 2017

•

- Tackling global NEP (Simon Besnard)
- Global partitioning of ET = T + E (Jacob Nelson)
- Incorporate dynamic effects (cf. my AGU talk)
- FLUXCOM-MDF (Nuno Carvalhais, Anthony Bloom)
- Incorporating CO₂ effect
- Updating:
 - using FLUXNET2015
 - Using MODIS Collection 6
- So many more things

