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Empirical upscaling methodology
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Reichstein et al. (2014), PNAS

Representativeness in climate space
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After 1st promising results: global effort

MDF

ML

1st idea: RECCAP ws, Tuscia Consolidation: Berkeley 2012 ws
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Atmospheric CO2 concentration

network
Large-scale biosphere-atmosphere

flux estimates

Wind fields, 

Transport modelling

Bio-Atm flux network

Remote sensing and

meteo fields, 

„Biosphere“ modelling
Spatially explicit flux estimates

Key assets and challenges of  bottom-up:

+ Flux predicted from flux ( crossvalidation possible)

+ Spatially explicit at potentially high resolution

+ High-temporal resolution possible (incl. diurnal)

- Not all predictors needed for NEE readily available

- No global constraint ( can be globally “off”)

Inferring fluxes: complementary strategies
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Tree ensembles
Random Forests
Model Tree Ensembles (3 variants)
Multivariate Adaptive Regression 
Splines

Kernel methods
Support Vector Machines
Kernel Ridge Regression 
Gaussian Process Regression
GP Regression + Random Forests

Neural Networks
(2 variants)

Cross-validation & Training

Driven only by remote sensing data
8 daily temporal, 0.0833° spatial, 2001-2012

Driven by climate data & remote sensing 
mean seasonal cycles

daily temporal, 0.5° spatial tiled by PFT, 1982-2010

Global Products: all Fluxes - Rn, NEE, LE, H, GPP, TER 

Satellite
Vegetation Indices 
(LAI, FPAR, EVI, NDVI, NDWI, LSWI)
Land Surface Temperature (day, night)
Reflectances (7 Bands)

Mean seasonal cycles
Mean, Max, Min,

Amplitude

Feature Selection
Guided Hybrid Genetic Algorithm

Explanatory variables (~200)

FLUXNET Quality control

Climate
Temperature (Tair, Tmin, Tmax)
Radiation (Rg, Rpot, Rg/Rpot)
Humidity (Rh, VPD)
Moisture (precip, WAI1, WAI2, IWA)
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Cross-validation (leave-one-site-out)

Tramontana et al. (2016),  BG



FLUXNET workshop, Berkeley 2017

Primary production (GPP) [g m-2 day-1] Evapotranspiration [MJ m-2 day-1]

Sensible heat flux [MJ m-2 day-1] Soil water availability [index]

Data: Jung et al. (2011).  Animations: F. Gans, MPI-BGC
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Data-driven view on dynamic Biosphere-Atmosphere Exchange
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How to evaluate?
How to analyse?

Different answers for carbon fluxes 
and energy fluxes
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Seasonal cycle of NEE against inversion and model 
“NEE” (fire subtracted)

Inversions
Trendy
FLUXCOMRS
FLUXCOMRS+MET

MTEJung et al 2011
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Comparison with sun induced fluorescence 
seasonal cycle (2009-2010)

SIF
Trendy
FLUXCOMRS
FLUXCOMRS+MET

MTEJung et al 2011
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FLUXCOM and atmospheric inversion-based
NEE variability correlate well

Jung et al. (2017),  Nature

…as good as state-of-the-art ensemble of vegetation models (“Trendy”)

[but magnitude does not match well!]
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Global signal related to temperature, local signal to water

„global“

„local“

Temperature driven

Water driven

Radiation driven

Total signal
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Global C-Cycle-temperature relation demystified

EOF1 of NEETEMP

EOF1 of
temperature
driven NEE 
component

EOF1 of water
driven NEE 
component

Jung et al. (2017)
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Monthly-latitudinal sensitivities: water effects 
on GPP and TER compensate

Based on: 𝜹𝑭𝒍𝒖𝒙 = 𝒂𝑻𝒆𝒎𝒑 ∗ 𝜹𝑻𝒆𝒎𝒑 + 𝒂𝑾𝑨𝑰 ∗ 𝜹𝑾𝑨𝑰 + 𝒂𝑹𝑨𝑫∗ 𝜹𝑹𝒂𝒅, for each month
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Evaluation of upscaled Rn
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Half-hourly data-driven flux estimates

Bodesheim, Jung, Mahecha et al. 

Relevant for:

• Land-atmosphere coupling (energy fluxes, convection, cloud 

formation)

• Higher-resolution atmospheric inversions (CO2 net exchange)

• Detection of extreme conditions 

• Global functional biogeography (e.g. derivation of Amax)
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Some of the next steps

• Tackling global NEP (Simon Besnard)
• Global partitioning of ET = T + E (Jacob Nelson)
• Incorporate dynamic effects (cf. my AGU talk)
• FLUXCOM-MDF (Nuno Carvalhais, Anthony 

Bloom)
• Incorporating CO2 effect 
• Updating: 

– using FLUXNET2015
– Using MODIS Collection 6

• So many more things ….


