

C-N-H₂O fluxes observations in ChinaFLUX

Shuli Niu, Guirui Yu & ChinaFlux members

Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences

- 1. C-N-H₂O fluxes observational systems
- 2. New progresses in C-N-H₂O fluxes studies
- 3. Future research opportunities

ChinaFLUX

973 Program

生态系统碳通量联网观测站点

农田(8个)

草地和湿地(17个) 森林(11个)

Program of CAS

Stage III 2010-2014

Stage IV 2015-2017

NSFC: Key Program
 NSFC: Intercoop Program
 CERN Special program

Knowledge Innovation Program of CAS

National Program (973)

Program)

Stage | 2001-2004

Stage II 2005-2009

- Program of CAS
- **NSFC: Key Program**
- NSFC Asia 3 Foresight Program

ChinaFLUX

(http://www.chinaflux.org/enn/index.aspx)

C-N-H₂O fluxes coordinated observation systems

Continuous CO₂ and H₂O stable isotope fluxes measurement system

- Isotope ratio infrared spectroscopy (IRIS)
- (δD, δ¹⁸O)-H₂O, (δ¹³C, δ¹⁸O)-CO₂ ratio and fluxes automatic, synchronal and continuous measurement
 Success in capturing the rapid change of stable CO₂ and H₂O

Observation network for atmospheric wet N deposition

41 typical terrestrial ecosystems cover forest, grassland, desert, lake, marsh, karst and urban ecosystems.
22 provinces and 8 ecological regions

Automatic measurement systems for soil greenhouse gases

Laser technique

- Soil CO₂, CH₄, and N₂O fluxes automatic and continuous measurement
- **High precision:** CO_2 : 0.5umol m⁻² s⁻¹ (5umol m⁻² s⁻¹) CH₄: 2nmol m⁻² s⁻¹(20nmol m⁻² s⁻¹); N₂O: 0.5nmol m⁻² s⁻¹ (2nmol m⁻² s⁻¹)

Outlines

1. C-N-H₂O fluxes observational systems of ChinaFLUX

- 2. New progresses in C-N-H₂O fluxes research of ChinaFLUX
 - spatial patterns of C fluxes and biogeographic mechanisms
 - decadal variation of atmospheric N
 - spatial patterns of H_2O fluxes and water use efficiency

Geographic distribution of C fluxes in China

Yu et al., 2013. Global Change Biology

Controlling climate factors: MAT & MAP

Forest

Grassland

Wetland

Cropland

800

MAP(mm)

1200

1600

MAT and MAP together GPP:79% RE:62% NEP:66%

The determinant role of MAT and MAP did not change with ecosystem types.

Yu et al., 2013. GCB

Large C uptake in subtropical forest ecosystems in the East Asian monsoon region

Net C uptake in subtropical forests in the East Asian monsoon region: 362 ± 39 g C m⁻² yr⁻¹.

Total regional uptake of carbon: 0.72 ± 0.08 Pg C yr⁻¹, 8% of the global forest NEP

Yu et al., 2014. PNAS

Large C uptake in subtropical forest ecosystems in the East Asian monsoon region

Spatial pattern of atmospheric wet N deposition in China

Mean wet deposition: <u>11.11</u> in the <u>1990s</u> and <u>13.87</u> kg ha⁻¹ a⁻¹ in the <u>2000s</u>
High N deposition regions: Central China and South China

Zhu et al., 2015, Science of the Total Environment

Temporal variation of atmospheric wet N deposition in China

Influencing factors of atmospheric N deposition in China

Prediction model: $N_{total} = 23.44 \times (F_N \times 18.5\% + E \times 0.24\%)^{0.4} R^2 = 0.88, P < 0.001$

Controlling climate factors for ET in China

MAR, MAT and MAP are direct influence factors for the spatial pattern of AET.

AET= $0.19MAP+0.21R_n+9.49MA$ T-191.123, $R^2=0.84$

Zheng et al. 2016, Journal of Geographical Sciences

Spatial pattern of water use efficiency(WUE) in China

Zhu et al., 2015, Global and Planetary Change

Water use efficiency for carbon sequestration in China

Water use efficiency threshold for terrestrial ecosystem carbon sequestration in China under afforestation

Yang Gao^{a,b}, Xianjin Zhu^a, Guirui Yu^{a,*}, Nianpeng He^a, Qiufeng Wang^a, Jing Tian^a

^a Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China

^b USDA-ARS, National Soil Erosion Research Laboratory, Purdue University, IN 47907, United States

400-500 mm precipitation is a water

use efficiency threshold for ecosystem carbon sequestration

NATURE CLIMATE CHANGE | VOL 4 | JULY 2014 |

MITIGATION Water costs of afforestation

Agric. Forest Meteorol. 195-196, 32-37 (2014)

AB

Afforestation is one way to sequester carbon dioxide from the atmosphere and mitigate climate change, but choosing the best location is not always straightforward.

Yang Gao from the Institute of Geographic Sciences and Natural Resources Research, China, and colleagues investigated the water consumption cost of carbon sequestration (WCCC) for afforestation projects in China. They find an abrupt change in ecosystem and plant water-use efficiency coincident with the 400–500 mm average annual precipitation isopleth, where the WCCC is 1 kg H₂0 per g C. This threshold represents a boundary beyond which afforestation may lead to land degradation due to water depletion.

Unfortunately China's major afforestation programmes are mostly concentrated in relatively arid areas with a high WCCC to the west of the 400-500 mm precipitation isopleth. This illustrates the importance of considering water-use efficiency when selecting sites for afforestation.

Gao et al., 2014, Agricultural and Forest Meteorology

Outlines

1. C-N-H₂O fluxes observational systems

2. New progresses in C-N-H₂O fluxes studies in ChinaFLUX

3. Future research opportunities

Big project-ChineTERN

Advanced infrastructures for observation and experiment

28 super sites

 RgtHK#v.dig2021

 Store

 Attractive

 Attractive

Standardized experiments

National observation system in ChinaTERN

Temporal resolution : Automatic observation on hourly and continuous basis Spatial resolution : leaf→vegetation→ecosystem→landscape (100km²)

Manipulative experiments in ChinaTERN

Ecosystem modeling and prediction system in ChineTERN

Prediction of Chinese Ecosystems

Joint conference of AsiaFlux Workshop 2017 and the 15th Anniversary Celebration of ChinaFLUX

August 17-19, 2017 Beijing, China

Home Registration

Programme A

ChinoFLUX

Abstract Submission Acco

Accommodation Tran

Transportation

- Welcome Letter
- Important Dates
- Organizing Committee
- Plenary Speakers
- Date and Venue
- Registration
- Programme
- Visa Application
- Accommodation
- Sponsorship & Exhibition
- Contact Us

The joint conference of AsiaFlux Workshop 2017 and the 15th Anniversary Celebration of ChinaFLUX to be held in Beijing, China, on August 17-19, 2017.

The tentative thesis of AsiaFlux Workshop 2017 is "Linking ecosystem flux measurements and carbon management to global change". This workshop features will discuss the scientific challenges on flux measurement and monitoring, couplings cycles of carbon, water and nitrogen, upscaling approaches for regional carbon budget, as well as ecosystem carbon/water management.

As one of important partners of FLUXNET and AsiaFlux, ChinaFLUX will greet the coming 15th Anniversary since 2002. During this joint conference, a series of celebration will be organized for the 15th Anniversary of ChinaFLUX.

Date & Vanue

- Training Course: August 14-16, Institute of Institute of Geographic Sciences and Natural Resources Research
- AsiaFlux Workshop 2017: August 17, Beijing International Convention Center
- The 15th Anniversary Celebration of ChinaFLUX: August 18, Beijing International Convention Center
- Field Excursion: August 19, Yucheng site
- Organizers

Important Dates

- March 05, 2017: Open for Registration & Abstract submission
- June 30, 2017: Deadline for training course application
- July 20, 2017: Deadline for ONLINE registration & Abstract submission
- July 20, 2017: Deadline for field excursion

Thanks for your attention!

Thank You !

The way forward-ChineTERN

Integration of atmosphere and ground observation + manipulative experiment + model prediction